

Строение атома и атомного ядра. Изотопы.

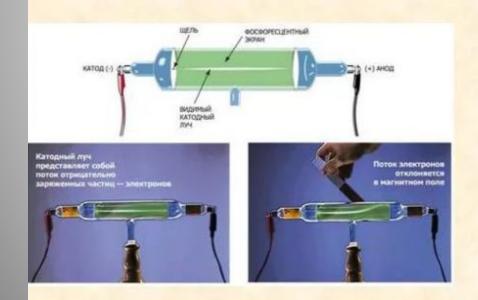
Молчанова Елена Робертовна МБОУ СОШ 144 Красноярск.

Ученые древности о строении вещества

- Древнегреческий ученый Демокрит 2500 лет назад считал, что любое вещество состоит из мельчайших частиц, которые впоследствии были названы «атомами», что в переводе на русский язык означает «неделимый»
- Долгое время считалось, что атом является неделимой частицей.

Явления, свидетельствующие о сложной структуре атома.

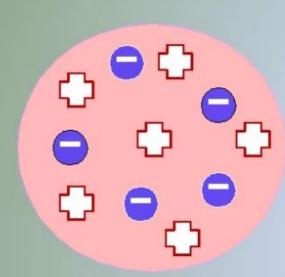
Слово «атом» означает «неделимый». В течение длительного времени атом считался наименьшей частицей вещества. Но в начале XIX века были

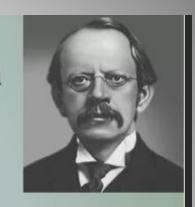

открыты явления, обнаруживающие сложность строения атома:

- Изучение электропроводности различных веществ привело к открытию отрицательно заряженной частицы – электрона, входящего в состав атома.
- 2. Исследование радиоактивности доказало, что в состав атома входят также и положительно заряженные частицы.

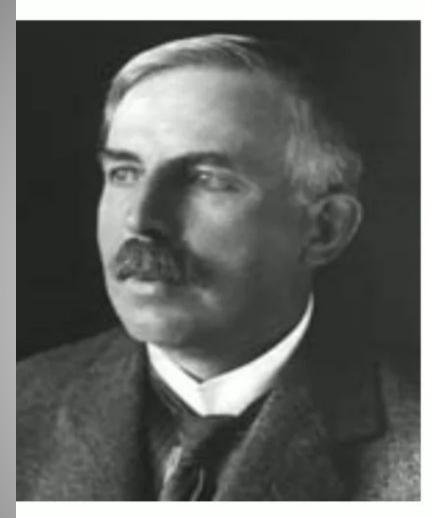
1887г **Генрих Герц** открыл фотоэффект

Атом имеет сложное строение


1896 г **Анри Беккерель** открыл явление радиоактивности (самопроизвольного излучения, которое может засветить фотопластинку)


30 апреля 1897 г., когда Джозеф Джон Томсон доложил о своих исследованиях катодных лучей, считается "днём рождения" электрона.

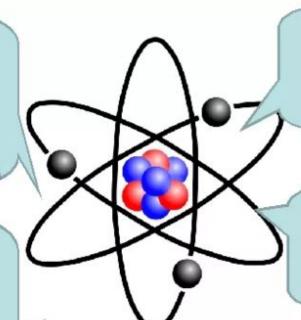
RNMNX



Модель строения атома Томсона 1903 г.

«Кекс с изюмом»

- 1. Атом шар, по всему объёму которого равномерно распределён положительный заряд.
- **2.** Внутри шара находятся электроны.
- 3. Каждый электрон может совершать колебательные движения около своего положения равновесия.
- 4. Положительный заряд шара равен по модулю суммарному заряду электронов, поэтому заряд атома в целом равен нулю.


Эрнест Резерфорд
В 1911 году
сформулировал
планетарную модель
атома:

атом состоит из положительно заряженного ядра и электронов, вращающихся вокруг ядра по замкнутым орбитам подобно движению планет вокруг Солнца.

Строение атома

Ядро состоит из положительно заряженных (протонов) и нейтральных (нейтронов) частиц

Вокруг атомного ядра движутся легкие отрицательно заряженные частицы (электроны)

В центре атома находится положительно заряженное ядро

В ядре сосредоточена практически вся масса атома

Атом в целом электрически нейтрален

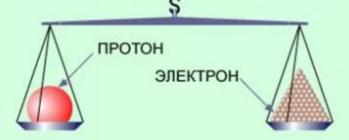
1913 — английский физик Генри Мозли на основании экспериментальных данных (исследование рентгеновских спектров химических элементов) установил, что порядковый номер элемента совпадает с зарядом ядра атома

Периодическое изменение свойств элементов зависит от их порядкового номера.


Модель ядра

Иваненко и Гейзенберг (**1932 г)** предложили

протонно-нейтронную модель атомного ядра


(1904 - 1994)

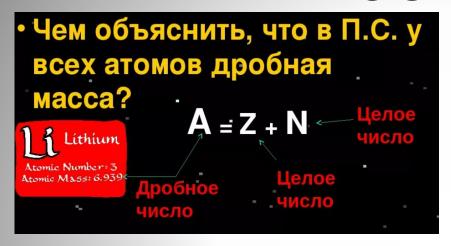
(1901 - 1976)

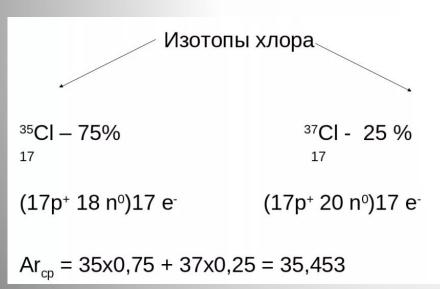
МАССА ПРОТОНА ИЛИ НЕЙТРОНА В 1840 РАЗ БОЛЬШЕ МАССЫ ЭЛЕКТРОНА

ПОЭТОМУ ПРАКТИЧЕСКИ ВСЯ МАССА АТОМА СОСРЕДОТОЧЕНА В ЕГО ЯДРЕ

ШАР, СОСТОЯЩИЙ ИЗ ЯДЕРНОГО ВЕЩЕСТВА, ДИАМЕТРОМ 0,5 км РАВЕН ПО ВЕСУ ЗЕМНОМУ ШАРУ Массовое число (A) равно сумме протонов и нейтронов.

A = сумма протонов + сумма нейтронов


Так как порядковый номер элемента (Z) равен заряду ядра (числу протонов), то можно записать следующее:


$$A = Z + N$$

где N — число нейтронов в ядре атома

Элементарная частица	(Обозначение
протон	$\frac{1}{1}p$	$_{1}^{1}H$
нейтрон	$\frac{1}{0}n$	
электрон	$_{-1}^{0}\beta$	0 e e
позитрон	$^{0}\beta$	$_{+1}^{0}e e^{+}$
нейтрино	V	
антинейтрино	v	
Альфа-частица	$\frac{4}{2}\alpha$	$_{2}^{4}He$

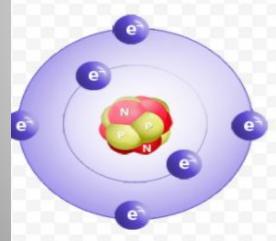
изотопы

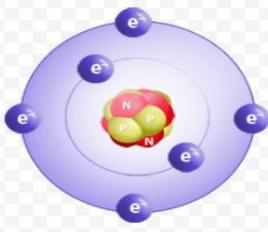
• Это объясняется существованием изотопов.

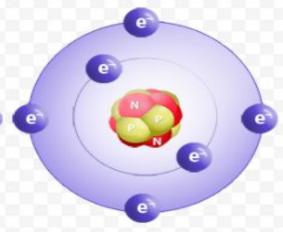
ИЗОТОПЫ – это атомы одного химического элемента, имеющие одинаковое число протонов и электронов, но разное нейтронов и разные массовые числа.

изотопы углерода

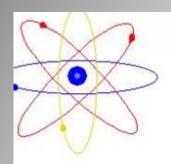
Углерод-12




Углерод-13

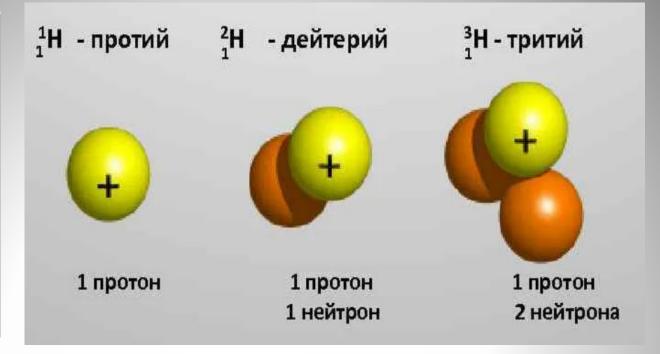


Углерод-14



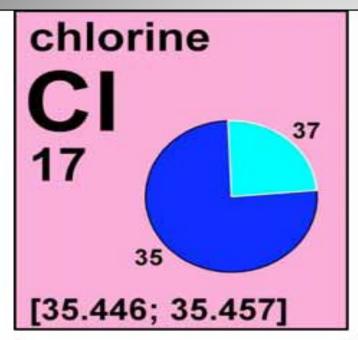
РАСПРОСТРАНЕННОСТЬ

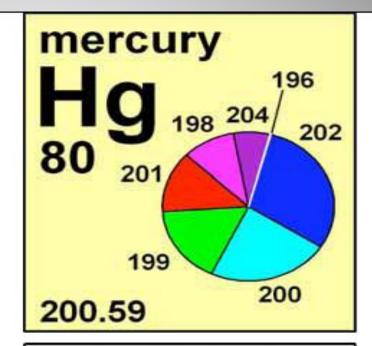
98,89% 1,11% 1 • 10⁻¹¹%


- Название «изотопы» было предложено в 1912 английским радиохимиком Фредериком Содди, который образовал его из двух греческих слов: isos одинаковый и topos место.
- Изотопы занимают одно и то же место в клетке периодической системы элементов Менделеева.

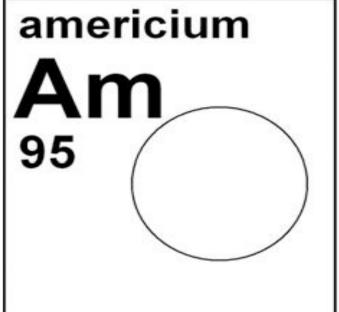
Изотопы водорода.

- Легкий водород ¹H(в ядре 1 протон). При соединении с кислородом образуют обыкновенную воду, которая при нормальном атмосферном давлении кипит при 100°C и замерзает при 0°C.
- 2. Тяжелый водород ²₁H(в ядре 1 протон и 1 нейтрон). При соединении с кислородом образуют тяжелую воду, которая при нормальном атмосферном давлении кипит при 101,2°C и замерзает при 3,8°C.
- 3. Сверхтяжелый водород ${}_{1}^{3}H$ (в ядре 1 протон и 2 нейтрона). Радиоактивен, излучает быстродвижущиеся β частицы. Период полураспада 12 лет.


Символ нуклида	Название	
¹H	Протий	
² H	Дейтерий	
³ H	Тритий	
⁴ H	Квадий	
4.1H	Мюонный гелий	
5H	Пентий	
eH	Гексий	
⁷ H	Септий	



Основная масса природного водорода – протий (1 H), на 6800 атомов которого приходится ~ 1 атом дейтерия (D). Тритий (T) образуется из азота в верхних слоях атмосферы при ядерных реакциях под действием нейтронов космических лучей: $^{14}_{7}\mathrm{N}$ + n = $^{12}_{6}\mathrm{C}$ + $^{3}_{1}\mathrm{H}$.


Количество T на земле не более 2-3 кг. Период полураспада T – 12,262 года, в результате \mathfrak{F} - распада он превращается в изотоп ³He:

$${}_{1}^{3}H = {}_{2}^{3}He + {}_{-1}^{0}e$$

• Наибольшее количество изотопов (по 36 у каждого) у ксенона (Хе), открыт в 1898 г. Рамзаем и Траверсом (Великобритания), и у цезия (Cs), открыт в 1860 г. Бунзеном и Кирхгофом (Германия). Наименьшее количество (3: протий, дейтерий и тритий) у водорода (Н), открыт в 1776 г. Кавендишем (Великобритания).

Современная формулировка периодического закона

Свойства химических элементов, а также формы и свойства соединений элементов находятся в периодической зависимости от величины заряда ядер их атомов.

А точнее свойства химических элементов определяются периодически повторяющимися однотипными электронными конфигурациями

Обобщение

- Заряд ядра совпадает с порядковым номером элемента в периодической системе химических элементов Д. И. Менделеева.
- Протонное число равно заряду ядра атома элемента.
- <u>Нуклонное число</u> общее число протонов и нейтронов в ядре.
- Нуклид тип атомов с определёнными значениями нуклонного и протонного числа.

 Изобары – атомы (нуклиды) разных химических элементов, обладающие одинаковыми массовыми числами. Например, массовым числом 40 обладают атомы разных элементов:

Аргона 18Ar, Калия ⁴⁰ К. Кальция ⁴⁰₂₀Са.