Speech synthesis

1

Speech synthesis

- What is the task?
 - Generating natural sounding speech on the fly, usually from text
- What are the main difficulties?
 - What to say and how to say it
- How is it approached?
 - Two main approaches, both with pros and cons
- How good is it?
 - Excellent, almost unnoticeable at its best
- How much better could it be?
 - marginally

Input type

- Concept-to-speech vs text-to-speech
- In CTS, content of message is determined from internal representation, not by reading out text
 - E.g. database query system
 - No problem of text interpretation

Text-to-speech

- What to say: text-to-phoneme conversion is not straightforward
 - Dr Smith lives on Marine Dr in Chicago IL. He got his PhD from MIT. He earns \$70,000 p.a.
 - Have toy read that book? No I'm still reading it. I live in Reading.
- How to say it: not just choice of phonemes, but allophones, coarticulation effects, as well as prosodic features (pitch, loudness, length)

Architecture of TTS systems

Text normalization

- Any text that has a special pronunciation should be stored in a lexicon
 - Abbreviations (Mr, Dr, Rd, St, Middx)
 - Acronyms (UN but UNESCO)
 - Special symbols (&, %)
 - Particular conventions (£5, \$5 million, 12°C)
 - Numbers are especially difficult
 - 1995 2001 1,995 □236 3017 233 4488

Grapheme-to-phoneme conversion

- English spelling is complex but largely regular, other languages more (or less) so
- Gross exceptions must be in lexicon
- Lexicon or rules?
 - If look-up is quick, may as well store them
 - But you need rules anyway for unknown words
- MANY words have multiple pronunciations
 - Free variation (eg *controversy*, *either*)
 - Conditioned variation (eg record, import, weak forms)
 - Genuine homographs

Grapheme-to-phoneme conversion

- Much easier for some languages (Spanish, Italian, Welsh, Czech, Korean)
- Much harder for others (English, French)
- Especially if writing system is only partially alphabetic (Arabic, Urdu)
- Or not alphabetic at all (Chinese, Japanese)

Syntactic (etc.) analysis

- Homograph disambiguation requires syntactic analysis
 - He makes a record of everything they record.
 - I read a lot. What have you read recently?
- Analysis also essential to determine appropriate prosodic features

Architecture of TTS systems

Prosody modelling

- Pitch, length, loudness
- Intonation (pitch)
 - essential to avoid monotonous robot-like voice
 - linked to basic syntax (eg statement vs question), but also to thematization (stress)
 - Pitch <u>range</u> is a sensitive issue
- Rhythm (length)
 - Has to do with pace (natural tendency to slow down at end of utterance)
 - Also need to pause at appropriate place
 - Linked (with pitch and loudness) to stress

Acoustic synthesis

- Alternative methods:
 - Articulatory synthesis
 - Formant synthesis
 - Concatenative synthesis
 - Unit selection synthesis

Articulatory synthesis

- Simulation of physical processes of human articulation
- Wolfgang von Kempelen (1734-1804) and others used bellows, reeds and tubes to construct mechanical speaking machines
- Modern versions simulate electronically the effect of articulator positions, vocal tract shape, etc.
- Too much like hard work

Formant synthesis

- Reproduce the relevant characteristics of the acoustic signal
- In particular, amplitude and frequency of formants
- But also other resonances and noise, eg for nasals, laterals, fricatives etc.
- Values of acoustic parameters are derived by rule from phonetic transcription
- Result is intelligible, but too "pure" and sounds synthetic

Formant synthesis

- Demo:
 - In control panel select
 "Speech" icon
 - Type in your text and
 Preview voice
 - You may have a choice of voices

ch Properties		?
kt To Speech	The voice properties speed	and other options for
Voice selection	ranslation	
Microsoft Sam		*
		Settings
You have selected Mi	crosoft Sam as the computer's	s default voice. Preview Voice
Voice speed		
		1 1 1 1 1 1
Slow	Normal	Fast
Slow	Normal	Fast Audio Output

Concatenative synthesis

- Concatenate segments of pre-recorded natural human speech
- Requires database of previously recorded human speech covering <u>all</u> the possible segments to be synthesised
- Segment might be phoneme, syllable, word, phrase, or any combination
- Or, something else more clever ...

Diphone synthesis

- Most important for natural sounding speech is to get the transitions right (allophonic variation, coarticulation effects)
- These are found at the boundary between phoneme segments
- "diphones" are fragments of speech signal cutting across phoneme boundaries
- If a language has P phones, then number of diphones is ~P² (some combinations impossible) – eg 800 for Spanish, 1200 for French, 2500 for German)

Diphone synthesis

- Most systems use diphones because they are
 - Manageable in number
 - Can be automatically extracted from recordings of human speech
 - Capture most inter-allophonic variants
- But they do not capture all coarticulatory effects, so some systems include triphones, as well as fixed phrases and other larger units (= USS)

Concatenative synthesis

- Input is phonemic representation + prosodic features
- Diphone segments can be digitally manipulated for length, pitch and loudness
- Segment boundaries need to be smoothed to avoid distortion

Unit selection synthesis (USS)

- Same idea as concatenative synthesis, but database contains bigger variety of "units"
- Multiple examples of phonemes (under different prosodic conditions) are recorded
- Selection of appropriate unit therefore becomes more complex, as there are in the database competing candidates for selection

Speech synthesis demo

🗿 AT&T Labs Text-to-Speech: Demo - Micro	soft Internet Explorer	
File Edit View Favorites Tools Help		<u></u>
🔇 Back 🔹 🌍 👻 📓 🏠 🔎 Se	arch 👷 Favorites 🧭 🔗 - 🌺 📧 - 🗾 🎇	
Address 🚳 http://www.research.att.com/~ttsweb/tts	s/demo.php	💌 🄁 Go
🥞 at&t	AT&T Labs, Inc Research	×.
	Text-To-Speech (TTS) Our Demo Speaks Your Text Home > Demo FAQ Publications Contact <u>Wizzard Software</u> <u>AT&T Natural Voices</u> <u>TV Commercial</u>	in.
STEP 1 Voice STEP 2 Text I ho	e & Language: Audrey UK English	
STEP 3 Click	: SPEAK - or - DOWNLOAD [restrictions apply [*]]	

Speech synthesis demo

22

🚰 Cepstral Text-to-Speech - Microsoft Internet Explorer	
File Edit View Favorites Tools Help	1
🕞 Back • 🕥 • 🖹 🙆 🏠 🔎 Search 🤺 Favorites 🤣 😒 • 嫨 🗷 • 🗔 🎉	
Address 🕘 http://cepstral.com/demos/	🛃 Go
Image: Note of the voices can speak any text they are given, with the voice you choose. Try out a sample of some of the voices that we currently have available. We are building new synthetic voices for Text-To-Speech (TTS) every day, and we can find or build the right one for any application. This demo is made available for non-commercial demonstration purposes only.	
Select a voice and enter some text below	
I speak conservative RP. I own a big gas-guzzling 4 wheel drive, and send my children to private school. Voice Lawrence (UK English) Rate Default Pitch Default Effect None Say It!	