Движение в пространстве

11 класс

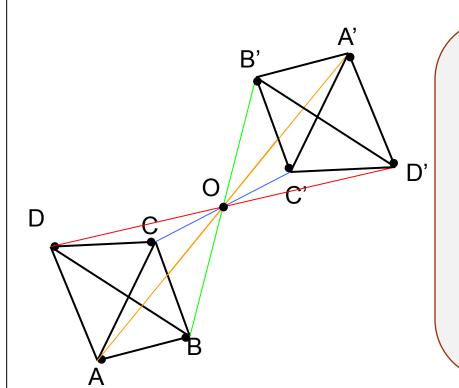
Понятие движения

Движение – это отображение пространства на себя, сохраняющее расстояния между точками

Виды движения

- Центральная симметрия
- Осевая симметрия
- Зеркальная симметрия
- Параллельный перенос

<u> Центральная симметрия</u>



Центральная симметрия — отображение пространства на себя, при котором любая точка M переходит в симметричную ей точку M_1 относительно данного центра O.

Центральная симметрия является движением.

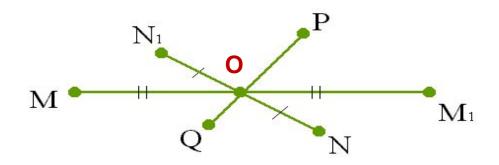
Обозначим буквой O центр симметрии и введем прямоугольную систему координат Oxyz c началом в точке O.

Установим связь между координатами двух точек M(x; y; z) и $M_1(x_1, y_1; z_1)$, симметричных относительно точки O.

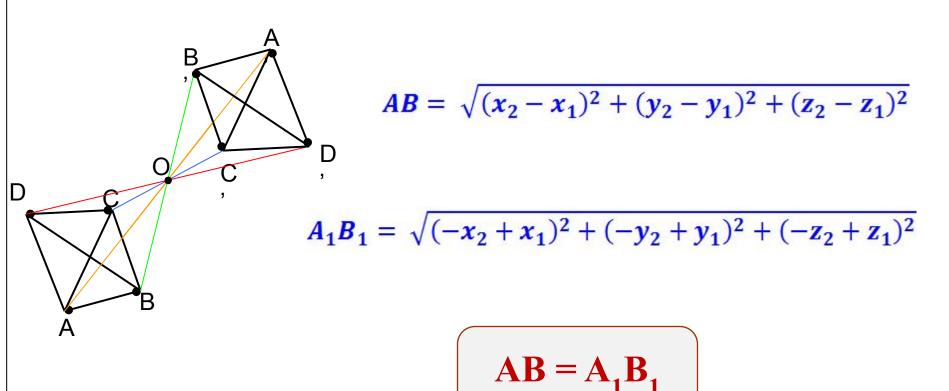
Если точка M не совпадает с центром O, то O — середина отрезка MM_1 . По формулам координат середины отрезка

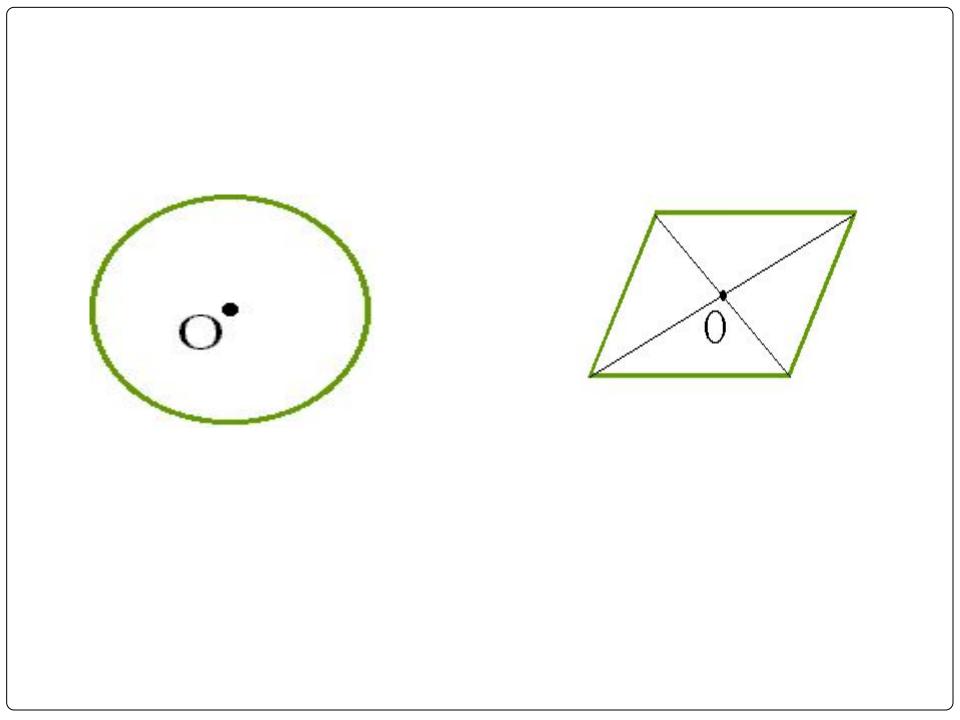
получаем
$$\frac{x+x_1}{2} = 0$$
 $\frac{y+y_1}{2} = 0$ $\frac{z+z_1}{2} = 0$

откуда $x_1 = -x$, $y_{1} = -y$, $z_1 = -z$. Эти формулы верны и в том случае, когда точки М и O совпадают.



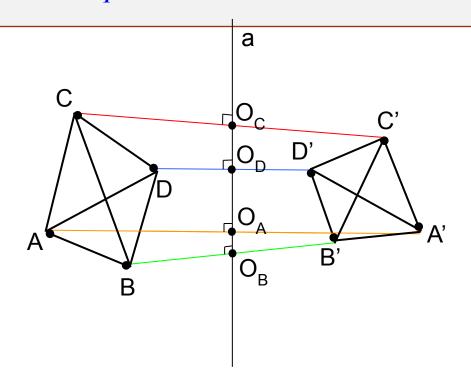
Рассмотрим теперь две точки $A(\mathbf{x}_1; \mathbf{y}_1; \mathbf{z}_1)$ и $B(\mathbf{x}_2; \mathbf{y}_2; \mathbf{z}_2)$ и докажем, что расстояние между симметричными точками A_1 и B_1 равно AB. Точки A_1 и B_1 имеют координаты $\mathbf{A}_1(-\mathbf{x}_1; -\mathbf{y}_1; -\mathbf{z}_1)$ и $B_1(-\mathbf{x}_2; -\mathbf{y}_2; -\mathbf{z}_2)$. По формуле расстояния между двумя точками





Осевая симметрия

Осевой симметрией с осью a называется такое отображение пространства на себя, при котором любая точка M переходит в симметричную ей точку M_1 относительно оси a.



Осевая симметрия является движением.

Для этого введем прямоугольную систему координат Oxyz так, чтобы ось Oz совпала с осью симметрии, и установим связь между координатами двух точек M(x; y; z) и $M_1(x_1, y_1; z_1)$, симметричных относительно оси Oz.

Если точка M не лежит на оси Oz , то ось Oz: 1) проходит через середину отрезка MM_I и 2) перпендикулярна к нему.

Из первого условия по формулам для координат середины отрезка получаем $\frac{x+x_1}{2}=0 \qquad \frac{y+y_1}{2}=0 \qquad ,$ откуда $x_1=-x$ и $y_1=-y$.

Второе условие означает, что **аппликаты точек** M и M_1 равны: $\mathbf{z_1} = \mathbf{z_2}$. Полученные формулы верны и в том случае, когда точка M лежит на оси Oz.

Рассмотрим теперь любые две точки $A(\mathbf{x}_1; y_1; z_1)$ и $B(x_2; y_2; z_2)$ и докажем, что расстояние между симметричными им точками A_1 и B_1 равно AB.

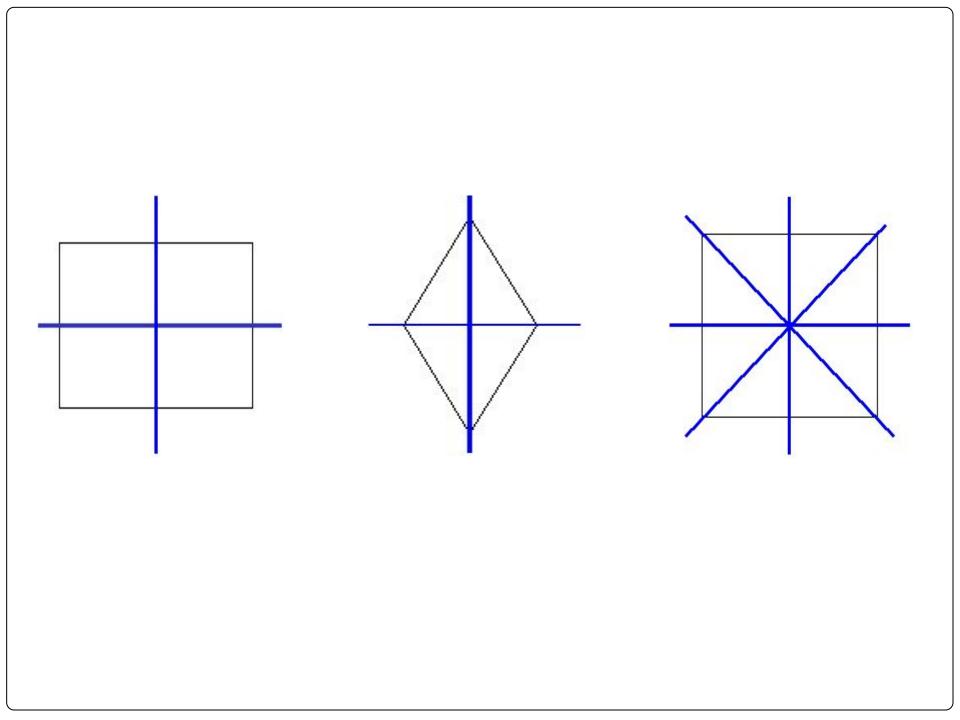
Точки A_1 и B_1 имеют координаты $\mathbf{A_1}(-\mathbf{x_1}\;;-\mathbf{y_1}\;;-\mathbf{z_1})$ и $B_1(-\mathbf{x_2};-\mathbf{y_2};-\mathbf{z_2})$.

По формуле расстояния между двумя точками находим:

$$AB = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

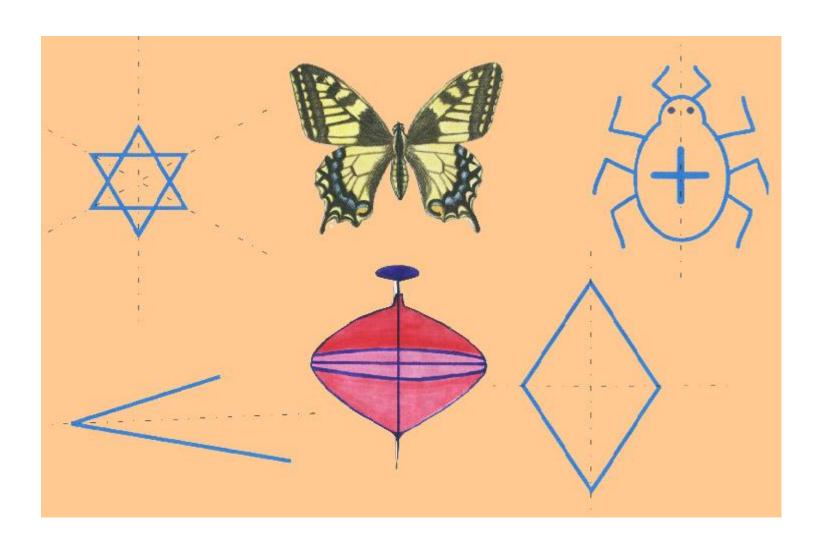
$$A_1B_1 = \sqrt{(-x_2 + x_1)^2 + (-y_2 + y_1)^2 + (-z_2 + z_1)^2}$$

$$\mathbf{AB} = \mathbf{A}_1 \mathbf{B}_1$$

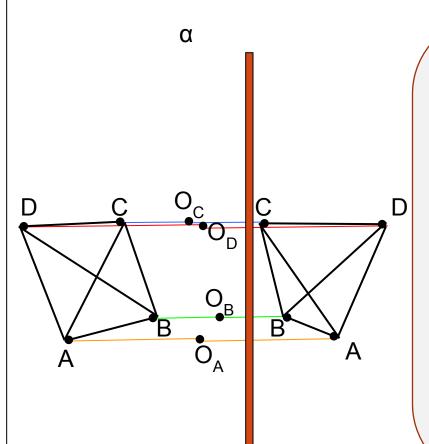


Осевая симметрия

Осевая симметрия вокруг нас



Зеркальная симметрия



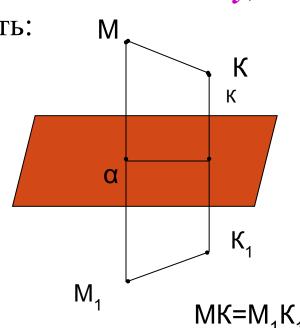
Зеркальной симметрией (относительно плоскости α) называется такое отображение пространства на себя, при котором любая точка М переходит в симметричную ей относительно плоскости α точку M_{1} .

Зеркальная симметрия является движением.

Для этого введем прямоугольную систему координат Oxyz так, чтобы плоскость Oxy совпала с плоскостью симметрии, и установим связь между координатами двух точек M(x; y;z) и $M_1(x_1; y_1; z_1)$, симметричных относительно плоскости Oxy.

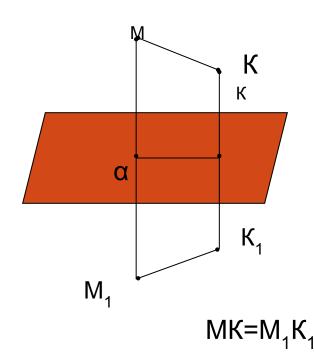
Если точка M не лежит в плоскости Oxy, то эта плоскость: M

- 1) проходит через середину отрезка MM₁;
- 2) перпендикулярна к нему.



Из первого условия по формуле координат середины отрезка получаем :
$$\frac{z+z_1}{2}=0$$
 , значит $z=-z$

Второе условие означает, что **отрезок ММ**₁ параллелен **оси** *Оz*, **и**, **следовательно**, x_1 =x, y_1 =y. Полученные формулы верны и в том случае, когда точка M лежит в плоскости Oxy.



Рассмотрим теперь две точки $A(x_1, y_1; z_1)$ и В $(x_2; y_2; z_2)$ и докажем, что расстояние между симмеричными им точками A_1 и В $_1$ равно AB. Точки A_1 и В $_1$ имеют координаты $A_1(x_1; y_1; -z_1)$ и $B_1(x_2; y_2; -z_2)$. По формуле расстояния между двумя точками находим:

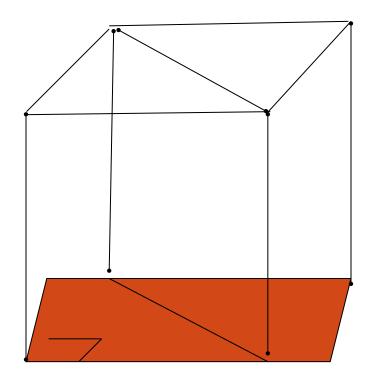
$$AB = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

$$A_1B_1 = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (-z_2 + z_1)^2}$$

$$\mathbf{AB} = \mathbf{A}_1 \mathbf{B}_1$$

Фигуры, симметричные относительно плоскости

Фигура (тело) называется симметричной относительно некоторой плоскости, если эта плоскость разбивает фигуру на две равные симметричные части.

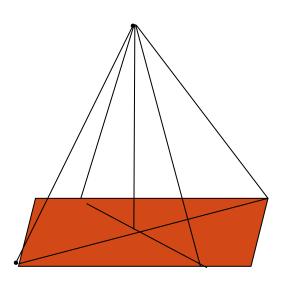


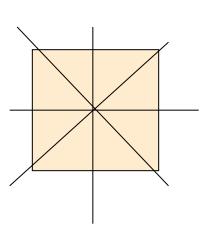
Сколько плоскостей симметрии имеет куб?

Ответы: 2; 4; 5; 6; 9

Симметрия в пирамиде

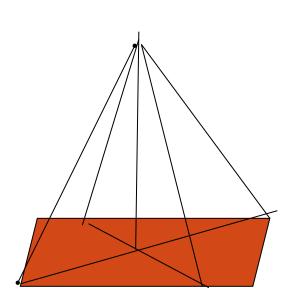
Верно ли высказывание: правильная четырехугольная пирамида имеет четыре плоскости симметрии

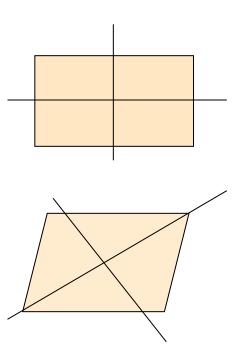




<u>Задачи</u>

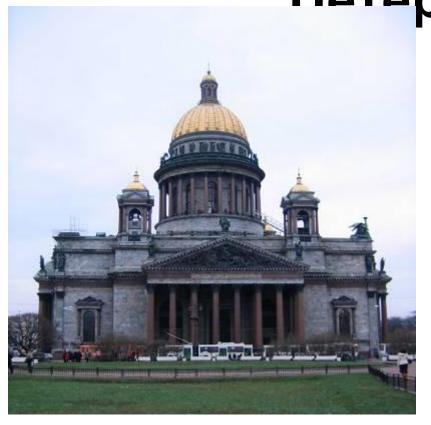
1. Сколько плоскостей симметрии имеет пирамида, в основании которой лежит прямоугольник, ромб?





Зеркальная симметрия в архитектуре г. Санкт-

Поторбурга



Александринский театр

Исаакиевский собор

Улица России

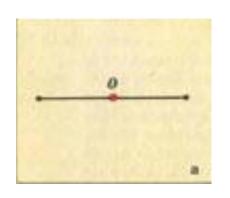
имеет плоскость симметрии в общем обзоре, но не все детали в архитектуре зданий симметричны.

Зеркальная симметрия

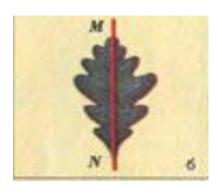
Пример зеркальной симметрии

Центральный зал станции

объекты



Центральная симметрия

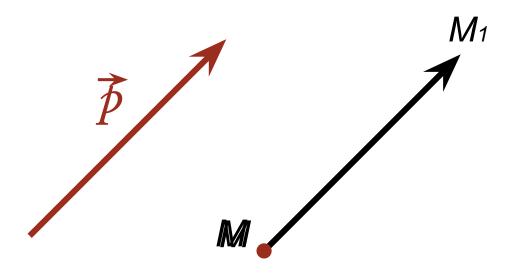


Осевая симметрия

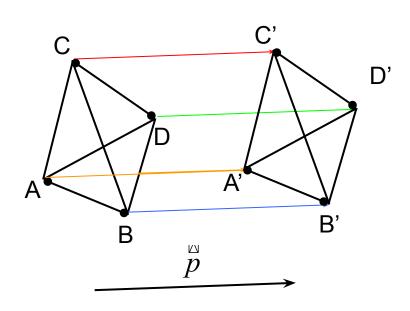
Зеркальная симметрия

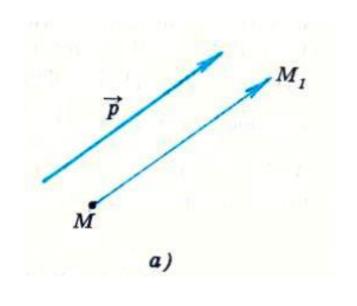
Параллельный перенос

Параллельным переносом на вектор p называется отображение пространства на себя, при котором любая точка M переходит в такую точку M_1 , что $MM_1 = p$



Параллельный перенос





Параллельный перенос является движением.

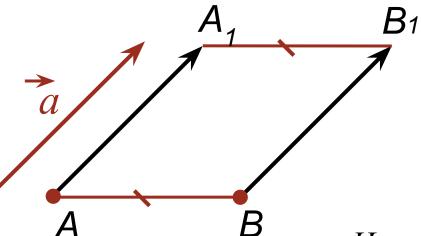
При параллельном

переносе на вектор р любые две

точки A и B переходят в точки A_1 B_1 Такие, что $\overrightarrow{AA_1} = \overrightarrow{p}$ и $\overrightarrow{BB_1} = \overrightarrow{p}$. Требуется доказать, что $A_1B_1 = AB$. По правилу треугольника $\overrightarrow{AB_1} = \overrightarrow{AA_1} + \overrightarrow{A_1B_1}$ С другой стороны, $\overrightarrow{AB_1} = \overrightarrow{AB} + \overrightarrow{BB_1}$

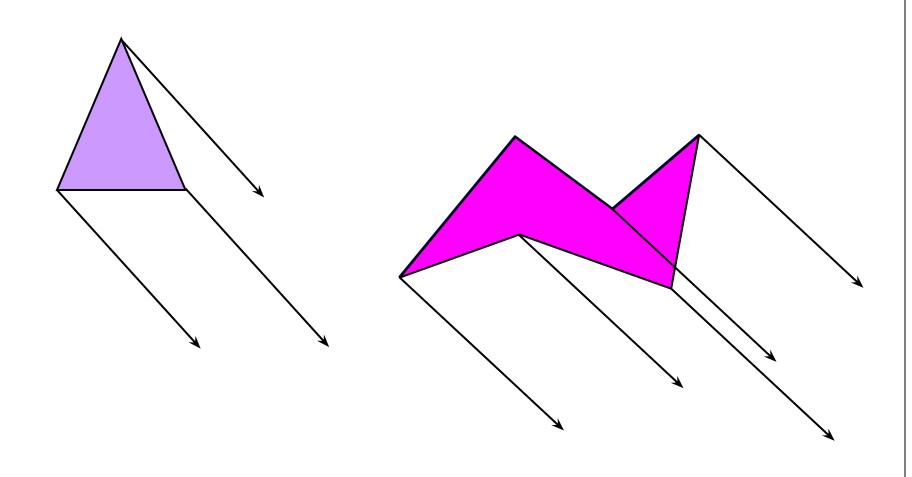
Из этих двух равенств получаем $AA_1 + A_1B_1 = AB + \overrightarrow{p}$, или $\overrightarrow{p} + A_1\overrightarrow{B}_1 = \overrightarrow{AB} + \overrightarrow{p}$, откуда $\overrightarrow{A_1}B_1 = \overrightarrow{AB}$. Следовательно, $A_1B_1 = AB$, что и требовалось доказать.

Параллельный перенос

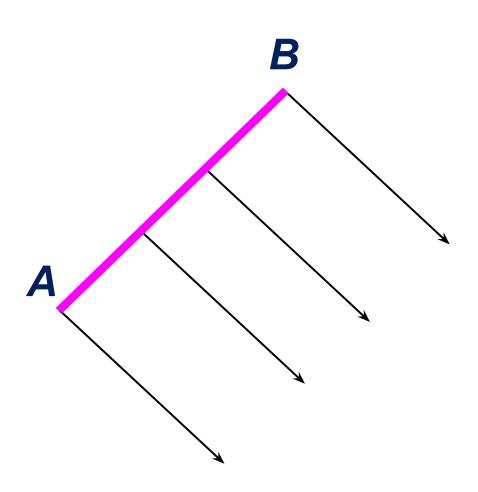


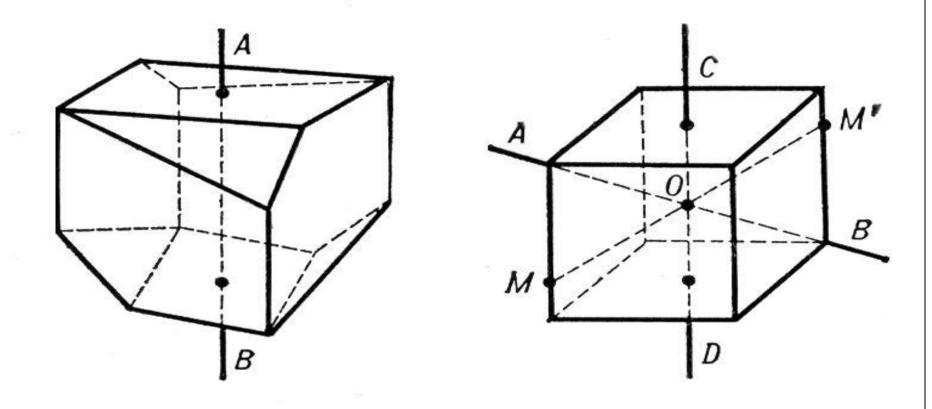
Наглядно это движение можно представить себе как сдвиг всей плоскости в направлении данного вектора на его длину.

Параллельный перенос различных фигур

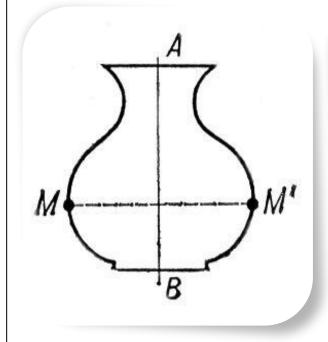


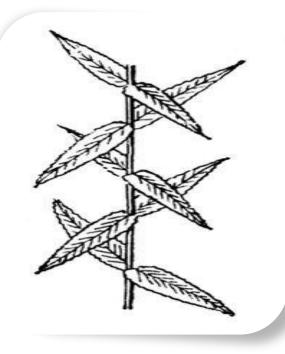
Параллельный перенос

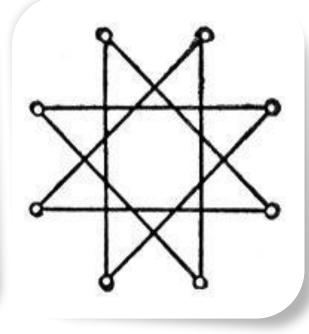




Многогранник. Зеркально Куб. Симметрия третьего поря осевая симметрия.





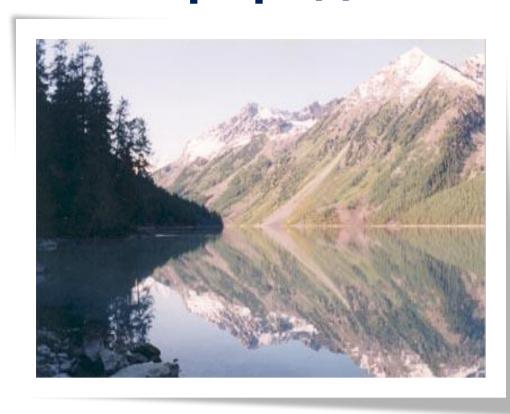


Кувшин. Плоская симметричная фигура.

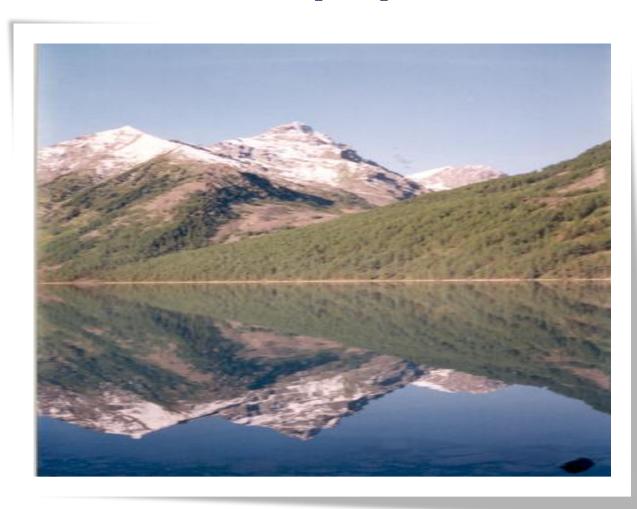
Крапива. Винтовая симметрия.

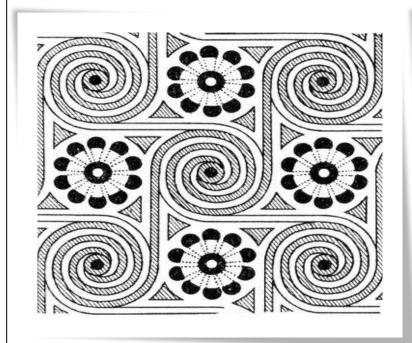
Звезда. Симметрия восьмого порядка.

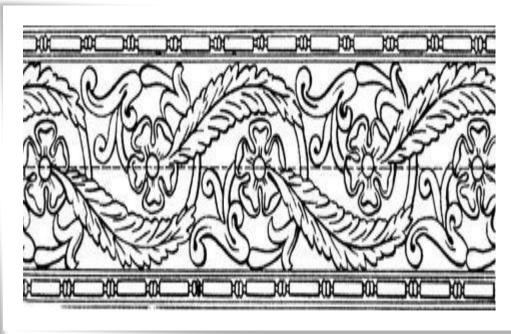
Зеркальная симметрия в природе



Зеркальная симметрия в природе







Симметрия переноса.

Симметрия. Орнамент.