Элементы нелинейного функциональног о анализа

Задачи (дом. работа)

<u> Baganu</u>

N10.1. Пусть U - отприте мион-во 6 AHME, V-osupouroe mu-bo 6 AHMF, $f: \mathcal{U} \to V - C^2 - gugbspeoneopopugue(z=1).$ Dougaso, uso $(f^{-1})(y) = [f(x)]^{-1}$ gree $\forall y \in V$, $x = f^{-1}(y)$.

Uneem:
$$(f \circ f^{-1})(y) = y \quad \forall y \in V$$
.

Duepop-en vo pabenes bo.

No respecue o upony foguou nommo gueran

огобрашений:

$$f'(x)\cdot (f^{-1})'(y) = I_F$$
 (1).

Umeem:
$$(f^{-1}\circ f)(x) = x \quad \forall x \in \mathcal{U}.$$

$$C_{1}eg-uo, (f^{-1})'(y)\cdot f'(x) = I_{E}(2).$$

$$(1), (2) \Rightarrow (f^{-1})'(y) = [f'(x)]^{-1}$$

N10.3. Due orospanenue
$$f: \mathbb{R}^2 \to \mathbb{R}^2$$
naign marpuny oneparopa $(f^{-1})'(y^\circ)$:

1) $f(x) = f(x_1, x_2) = \begin{pmatrix} x_1^2 \\ x_1 x_2 \end{pmatrix}, y^\circ = (1, 1);$

2)
$$f(x) = \begin{pmatrix} x_1^2 + x_2^2 \\ x_1^3 \end{pmatrix}$$
, $y^0 = (2,1)$.

$$\frac{N10.3}{0x} \quad \frac{2}{0x} \quad \frac{\partial f}{\partial x}(x) = \begin{pmatrix} 2x_1 & 2x_2 \\ 3x_1^2 & 0 \end{pmatrix} - u - ya$$

$$\int_{0}^{x_1^2} + x_2^2 = 2, \quad x_1^3 = 1. \quad x_1^4 = (1, 1) \quad u \quad x^2 = (1, -1)$$

$$- gfa \quad upoovpaya \quad T. \quad y^2 = (2, 1).$$

$$A_1 = \frac{\partial f}{\partial x}(1, 1) = \begin{pmatrix} 2 & 2 \\ 3 & 0 \end{pmatrix}; \quad A_2 = \begin{pmatrix} 2 - 2 \\ 3 & 0 \end{pmatrix}.$$

$$A_1 = \frac{\partial f}{\partial x}(1,1) = \begin{pmatrix} 2 & 2 \\ 3 & 0 \end{pmatrix}; \quad A_2 = \begin{pmatrix} 2 & -2 \\ 3 & 0 \end{pmatrix}.$$

$$A_{1}^{-1} = \frac{1}{6} \begin{pmatrix} 0 & 2 \\ 3 & -2 \end{pmatrix} = \frac{\partial f_{1}^{-1}}{\partial y} (y^{o});$$

$$A_{2}^{-1} = \frac{1}{6} \begin{pmatrix} 0 & 2 \\ -3 & 2 \end{pmatrix} = \frac{\partial f_{2}^{-1}}{\partial y} (y^{o}).$$

Глава 2. Гладкие многообразия

§ 1. Топологическое пространство и непрерывное отображение

- 1. Определение топологического пространства. Пусть X множество произвольной природы и $\tau = \{U\}$ совокупность его подмножеств, обладающая следующими свойствами:
 - 1) \emptyset , $X \in \tau$;
 - 2) объединение любой совокупности множеств из т принадлежит т;
- 3) пересечение любого конечного числа множеств из т принадлежит т.

Такая совокупность подмножеств τ называется топологией на X. Множество X с заданной на нем топологией τ называется топологическим пространством и обозначается (X, τ) , подмножества из совокупности τ называются открытыми (в пространстве (X, τ)).

Пример 1. X — числовая прямая \mathbb{R}^1 . Топологию на \mathbb{R}^1 можно задать следующим набором подмножеств: пустое множество \emptyset , всевозможные интервалы и их объединения $U = \bigcup (a_{\alpha}, b_{\alpha})$ (проверьте!).

Пример 2. $X = \mathbb{R}^2$. Открытым множеством назовем всякое множество в $X = \mathbb{R}^2$, которое вместе с каждой своей точкой содержит достаточно малый открытый круг с центром в этой точке, а также пустое множество. Легко проверить, что система всех открытых множеств в $X = \mathbb{R}^2$ образует топологию.

Пример 3. X — произвольное множество. Совокупность $\tau_0 = \{\emptyset, X\}$ задает топологию на X (проверьте!).

Пример 4. X — произвольное множество, $\tau_1 = \{$ всевозможные подмножества из $X\}$. Совокупность τ — топология на X (проверьте!).

Топология τ_1 называется максимальной или дискретной, а топология τ_0 — минимальной или тривиальной. Таким образом, на одном и том же множестве можно ввести различные топологии, например тривиальную и дискретную.

С понятием открытого множества в топологическом пространстве (X, τ) тесно связано двойственное понятие замкнутого множества: так называют множество, дополнение которого открыто. Таким образом, если $U \in \tau$, то $X \setminus U$ замкнуто, и обратно: если F замкнуто, то $X \setminus F$ открыто.

Упражнение 1°. Проверьте, что следующие множества замкнуты: отрезок [a, b] в \mathbb{R}^1 с топологией примера 1; замкнутый круг в \mathbb{R}^2 с

топологией примера 2.

2. Непрерывное отображение. Гомеоморфизм. Обсудим теперь определение непрерывного отображения топологических пространств.

Пусть (X, τ) , (Y, σ) — два топологических пространства с топологиями τ , σ соответственно. Пусть $f: X \to Y$ — отображение множеств.

Определение. Говорят, что f — непрерывное отображение топологических пространств, если полный прообраз $f^{-1}(V)$ любого открытого множества V пространства (Y, σ) является открытым множеством пространства (X, τ) . Если $f: X \to Y$, $g: Y \to Z$ — отображения топологических пространств, то естественно определяется суперпозиция $gf: X \to Z$ по правилу $(gf): x \mapsto g(f(x))$.

Теорема. Если f, g непрерывны, то и gf непрерывно. Доказательство легко следует из замечания

$$(gf)^{-1}(W) = f^{-1}(g^{-1}(W)),$$

где $W \subset Z$ — произвольное множество.

Определение. Два топологических пространства, (X, τ) , (Y, σ) , называются гомеоморфными, если существует отображение $f: X \rightarrow Y$, удовлетворяющее условиям: 1) $f: X \rightarrow Y$ — биективное отображение; 2) f непрерывно; 3) f^{-1} непрерывно.

Отображение f в этом случае называется гомеоморфизмом.

3. Подпространство топологического пространства

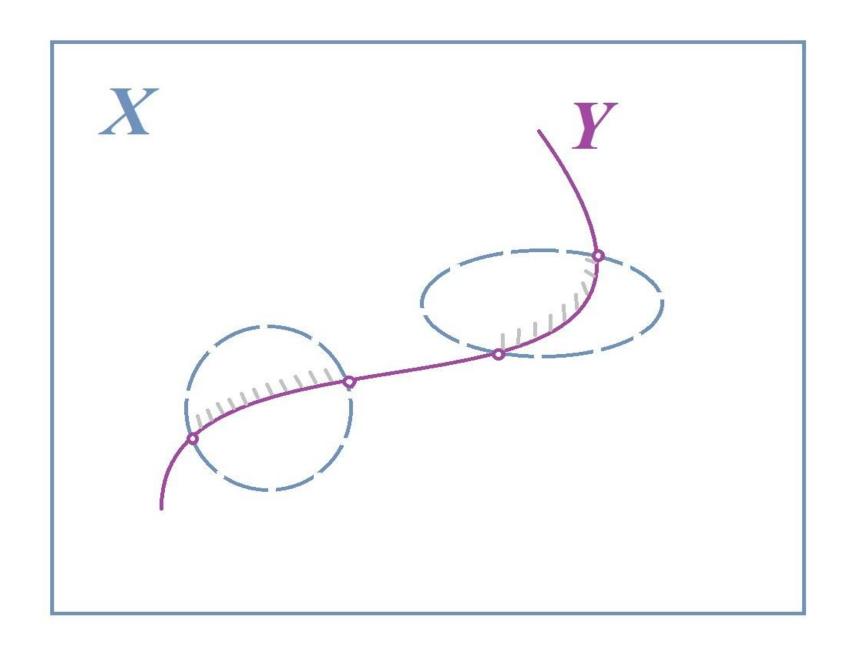
Подмножества метрических и топологических пространств часто рассматриваются как самостоятельные объекты. При этом подмножество Y метрического пространства X естественно наследует метрику из X. Определим теперь понятие наследственной топологии на подмножестве Y, когда X — топологическое пространство.

Пусть (X, τ) — топологическое пространство, $Y \subset X$ — подмножество в X. Рассмотрим систему подмножеств множества Y

$$\tau_Y = \{V: V = U \cap Y, U \in \tau\}.$$

Теорема. Система τ_Y является топологией на Y.

Доказательство предлагается провести читателю (оно очевидно). Топология τ_Y называется индуцированной или наследственной топологией из X. Пространство (Y, τ_Y) называется подпространство ством пространства (X, τ) .

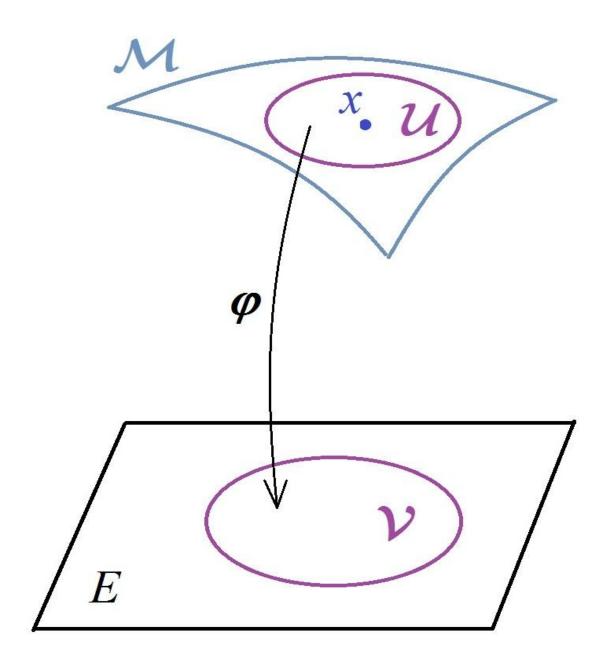


§ 2. Определение гладкого многообразия

1. Топологические многообразия

Пусть M — топологическое пространство (ТП), E — банахово пространство (БП).

И пусть для каждой точки $x \in M$ существуют окрестность U (то есть открытое в $T\Pi$ M множество, содержащее точку x), открытое в E множество $V \subset E$ и гомеоморфизм $\varphi: U \to V$ (другими словами, для каждой точки $x \in M$ существует окрестность U, гомеоморфная некоторому открытому множеству $V \subset E$).



Тогда ТП M называется топологическим многообразием (TM), а БП E — модельным пространством многообразия M.

Пара (U, φ) называется *картой* точки x.

Набор карт (конечный или счетный) $\{(U_i, \varphi_i)\}$ называется *атласом* многообразия M, если $\bigcup_i U_i = M$ (то есть если совокупность множеств $\{U_i\}$ является *открытым покрытием* многообразия M).

Таким образом, если на M задан атлас $\{(U_i, \varphi_i)\}$, то для каждой точки $x \in M$ найдется окрестность U_i , гомеоморфная открытому множеству $V_i = \varphi_i(U_i) \subset E$.

Если БП E конечномерно и $\dim E = n$, то ТМ M называется n-мерным и обозначается M^n .

Если БП E бесконечномерно, то ТМ M называется бесконечномерным или банаховым.

Рассмотрим **частный случай** : $E = \mathbb{R}^n$ (то есть $\dim M = n$). Пусть точке $x \in M^n$ соответствует карта (U_i, φ_i) . Тогда $\varphi_i(x) \in \mathbb{R}^n$ и $\varphi_i(x) = (\xi_1, \xi_2, ..., \xi_n)$. Координаты $(\xi_1, \xi_2, ..., \xi_n)$ называются локальными координатами точки x в карте (U_i, φ_i) .

2. Гладкие многообразия

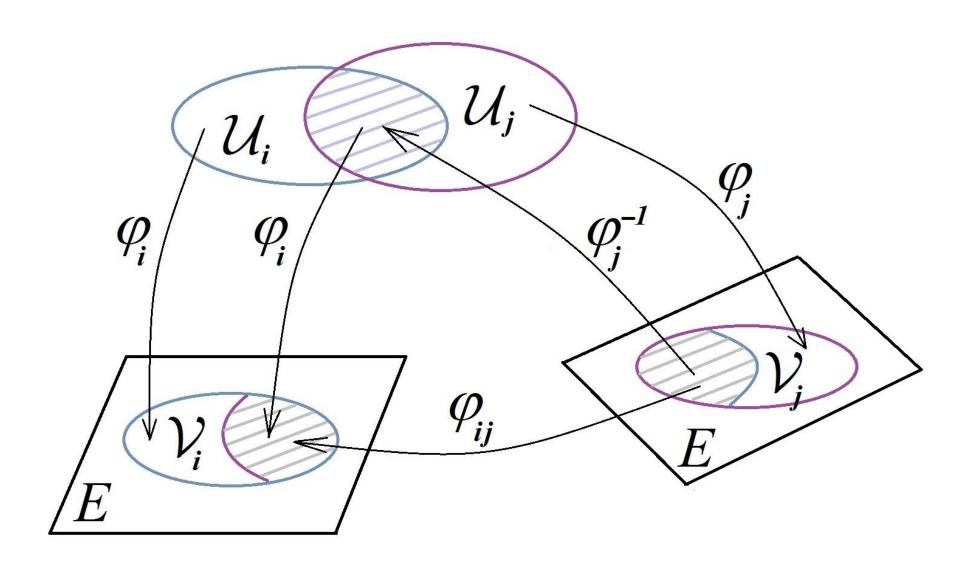
Пусть $\{(U_i, \varphi_i)\}$ — атлас многообразия M.

Карты (U_i, φ_i) и (U_j, φ_j) называются C^r – согласованными $(r \ge 1)$, если выполняется одно из следующих двух условий :

- 1) $U_i \cap U_j = \emptyset$;
- 2) $U_i \cap U_j \neq \emptyset$ и отображение

$$\varphi_{ij} = \varphi_i \circ \varphi_j^{-1} \colon \varphi_j(U_i \cap U_j) \to \varphi_i(U_i \cap U_j)$$

является C^r – диффеоморфизмом.



Отображение $\varphi_{ij} = \varphi_i \circ \varphi_j^{-1} \colon \varphi_j(U_i \cap U_j) \to \varphi_i(U_i \cap U_j)$ называется функцией перехода (или отображением перехода) от карты (U_j, φ_j) к карте (U_i, φ_i) .

Атлас, каждые две карты которого являются C^r – согласованными $(r \ge 1)$, называется C^r – атласом.

Топологическое многообразие, атлас которого является C^r – атласом, называется C^r – многообразием или гладким многообразием класса C^r .

§ 3. Два способа задания атласа на окружности

$$\frac{1-\overline{u} \text{ enocos}}{S^{1} \text{ equivarion}}$$

$$\frac{S^{1} \text{ equivarion}}{S^{1} \text{ equivarion}}$$

1-û enocos. Paccu-u oupyumoers

S¹ единичного радиуса с ценъром

$$x^2 + y^2 = 1 - yp - e$$

$$oupy u - \pi u.$$

$$\mathcal{U}_{1} = \{ (x,y) \in S^{1} : y > 0 \},$$

$$\mathcal{U}_{2} = \{ (x,y) \in S^{1} : y < 0 \},$$

$$\mathcal{U}_{3} = \{ (x,y) \in S^{1} : x > 0 \},$$

$$\mathcal{U}_{4} = \{ (x,y) \in S^{1} : x < 0 \}.$$

 $u_3 = \{(x,y) \in S^1: x > 03,$ $u_4 = \{(x,y) \in S^1: x < 09.$ Mu-ba Ui - orupture в TM S1 (в смысле инду упрованный гонологии). Расси-и карту (и, 41).

Paeau-u napry (21, 41). 0900p-e 41: U1 -> V1 = (-1,1) CR1; $\varphi_1:(x,y)\mapsto x:$ a) 91 - Enentubuse 05-e; δ) φ1 - Henp. OF-e, T.K. φ1 = JI1/21,

If
$$I_1 - npoenyul R^2 na R^2$$
,

 $I_1: (x,y) \mapsto x;$

b) obparuoe of $e \varphi_1^{-1}: V_1 \longrightarrow U_1$,

 $\varphi_1^{-1}(x) = (x, \sqrt{1-x^2}) - \text{Henp-no}, T.K.$
 $\psi_1^{1}(x) = x \quad u \quad \psi_1^{2}(x) = \sqrt{1-x^2} - \text{Henp op-yuy}$
 $va (-1, 1).$

Cheg-no, $\varphi_1: U_1 \longrightarrow V_1 - \text{romeomopophyu},$

Καρτα (
$$\mathcal{U}_{2}, \varphi_{2}$$
): $\varphi_{2}: \mathcal{U}_{2} \rightarrow V_{2} = V_{1}$,
 $\varphi_{2}(x,y) = x$, $\varphi_{2}^{-1}(x) = (x, -\sqrt{1-x^{2}})$.
Καρτα ($\mathcal{U}_{3}, \varphi_{3}$): $\varphi_{3}: \mathcal{U}_{3} \rightarrow V_{3} = V_{1}$,
 $\varphi_{3}(x,y) = y$, $\varphi_{3}^{-1}(y) = (\sqrt{1-y^{2}}, y)$.
Καρτα ($\mathcal{U}_{4}, \varphi_{4}$): $\varphi_{4}: \mathcal{U}_{4} \rightarrow V_{4} = V_{1}$,
 $\varphi_{4}(x,y) = y$, $\varphi_{4}^{-1}(y) = (-\sqrt{1-y^{2}}, y)$.
 $\mathcal{U}_{i} = S^{1} \Rightarrow \{(\mathcal{U}_{i}, \varphi_{i})_{i=1}^{y} - \text{ατλαc}_{i=1}^{y} \text{μα } S^{1}$.

Се-согласованность парт. Paecu-u (U1, φ1) u (U3, φ3). $\varphi_1(\mathcal{U}_1 \cap \mathcal{U}_3) = (0,1)$ $\varphi_3(u_1 \cap u_3) = (0,1)$ $\varphi_{31} = \varphi_3 \circ \varphi_1^{-1} : (0,1) \longrightarrow (0,1);$ φ31: X → y = V1-X2; 431 - Knacca Co;

(431) -1: y -> VI-y= - OF-e KN. C. UTax, 931: 9, (U1 NU3) -> 93 (U1 NU3) - дифореоторорији ил. СС. Dul oct-x nap napt Ce cornacoban-nocre tanne boinonnéerce (npobepere camoes-uo!). Creg-uo, atrae $\{(u_i, \varphi_i)\}_{i=4}^{co}$ -C-arrae.

Литература

Борисович Ю. Г., Близняков Н. М., Израилевич Я. А., Фоменко Т. Н.

«Введение в топологию»