

Аминокислоты

 Аминокислотами называются карбоновые кислоты, в углеводородном радикале которых один или несколько атомов водорода замещены аминогруппами.

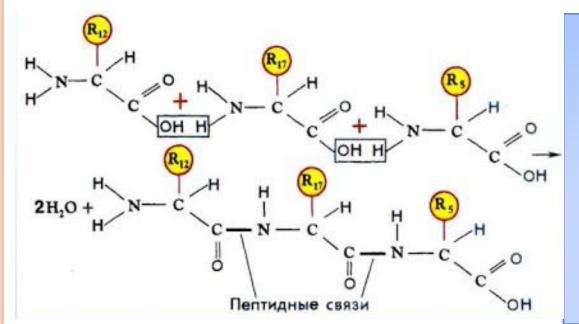
Глицин —
$$H_2N$$
— CH_2 — $COOH$ Аланин — H_2N — CH — $COOH$ — CH_3 — $COOH$ — CH_3 — $COOH$ — CH_3 — CH — $COOH$ — CH_3 — CH — $COOH$ — CH_2 — CH — $COOH$ — CH_2 — CH

Физические свойства аминокислот

Аминокислоты представляют собой кристаллические вещества с высокими (выше 250°С) температурами плавления, которые мало отличаются у индивидуальных аминокислот и поэтому нехарактерны. Плавление сопровождается разложением вещества. Аминокислоты хорошо растворимы в воде и нерастворимы в органических растворителях, чем они похожи на неорганические соединения. Многие аминокислоты обладают сладким вкусом.

АМИНОКИСЛОТЫ

1. Заменимые аминокислоты - они могут синтезироваться в организме


2. Незаменимые - в организме не образуются, их получают с пищей (лизин, валин, лейцин, изолейцин, тиреонин, фенилаланин, триптофан, тирозин, метионин)

Продукты, богатые аминокислотами:

Лейцин	молоко 🥤 кун	куруза 🎢 курица	яйца 🏀
Пизин	молоко 🥛	соя	говядина
Валин	молоко 🥛 кук	уруза 🃂 яйца 🬗	вяленая говядина •
Фенилаланин	яйца 🏀	коричневый рис	зерна 🌵
Треонин	кукуруза 🥕	соя	яйца b
Триптофан	молоко	маниока	яйца 🏀
Метионин	зерна	говядина 🌘	яйца 🏀
Гистидин	рыба	говядина 🍆	сыр
Изолейцин	кукуруза 🔑 к	артофель 🙌 кур	оица 🥬 яйца 🍗

Белки

Белки представляют собой высокомолекулярные органические соединения, построенные из остатков α-аминокислот, соединенных между собой пептидными связями.

В природе существует около 100 α-аминокислот, в организме встречается 25 в каждом белке 20, из них может быть образовано 2 432 902 008 176 640 000 комбинаций.

Химический состав

У В белке следующие химические элементы: **С, H, O, N, S, P, Fe**.

Массовая доля элементов:

$$C - 50\% - 55\%$$

$$0 - 19\% - 24\%$$


$$H - 6,5\% - 7,3\%$$

$$N - 15\% - 19\%$$

$$S - 0.3\% - 2.5\%$$

$$P - 0.1\% - 2\%$$

Fe - 0,34% (гемоглобин)

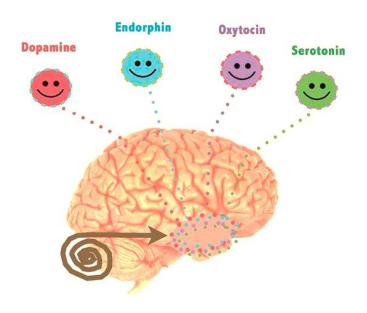
Гемоглобин - C3032H4816O872N780S8Fe4

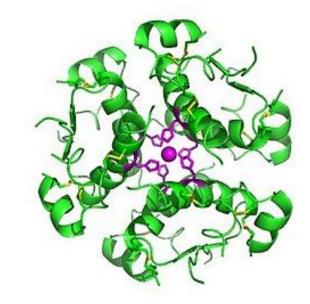
Функции белков в организме

- Ни один из известных нам живых организмов не обходится без белков. Белки служат питательными веществами, они регулируют обмен веществ, исполняя роль ферментов катализаторов обмена веществ, способствуют переносу кислорода по всему организму и его поглощению, играют важную роль функционировании нервной системы, являются механической основой мышечного сокращения, участвуют в передаче генетической информации и т.д.
- Белки входят в состав мозга, внутренних органов, костей, кожи, волосяного покрова и т.д.

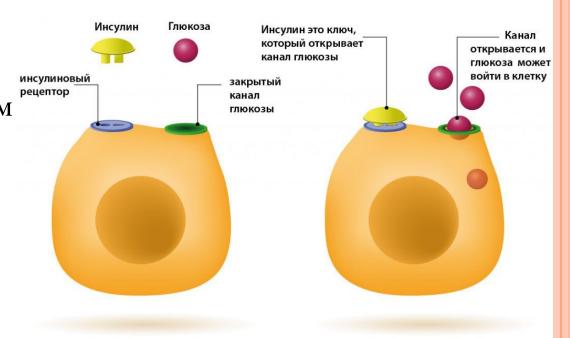
Функции белков.

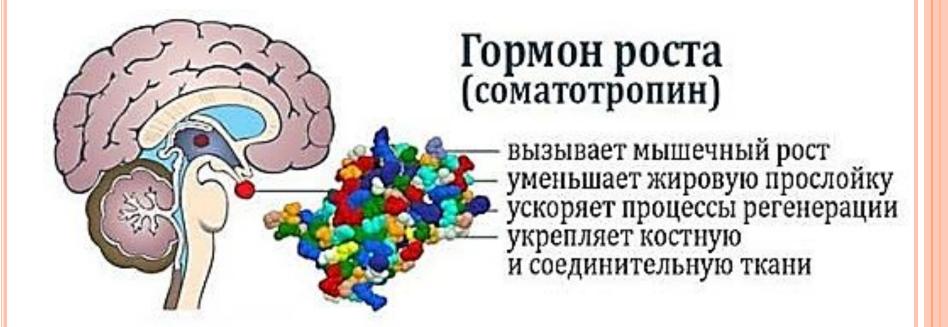
Функция	Определение	Пример
1. Строительная	Материал клетки	Кератин, коллагены
2. Транспортная	Переносят различные вещества	Гемоглобин
3. Защитная	Обезвреживают защитные вещества	Иммуноглобулины
4. Каталитическая	Ускоряют протекание химических реакций в организме	Ферменты
5. Двигательная	Выполняют все виды движений	Миозин, актин
6. Регуляторная	Регулируют обменные процессы	Гормоны


- Белковый обмен в организме человека весьма сложен. В зависимости от состояния организма необходимое количество тех или иных белков постоянно изменяется, белки расщепляются, синтезируются, одни аминокислоты переходят в другие или распадаются, выделяя энергию.
- Рекомендуемая суточная норма потребления белка составляет 0,75-0,80 г качественного белка на 1 кг веса для взрослого человека, т.е. около 56 г в сутки для среднего мужчины и 45 г для женщины. Детям, особенно совсем маленьким, требуется больше белка (до 1,9 г на 1 кг веса в сутки), так как их организм интенсивно растет.


Гормоны

Гормоны - биологически активные вещества, которые оказывают влияние на обмен веществ. Многие гормоны являются белками, полипептидами или отдельными аминокислотами.


ВАШИ СЧАСТЛИВЫЕ ГОРМОНЫ


Одним из наиболее известных белков гормонов является инсулин. Этот простой белок состоит только из аминокислот. Инсулин снижает содержание сахара в крови, способствует синтезу гликогена в печени и мышцах, увеличивает образование жиров из углеводов, влияет на обмен фосфора, обогащает клетки калием

КАК РАБОТАЕТ ИНСУЛИН?

Регуляторной функцией обладают белковые гормоны гипофиза - железы внутренней секреции, связанной с одним из отделов головного мозга. Он выделяет гормон роста, при отсутствии которого развивается карликовость. Этот гормон представляет собой белок с молекулярной массой от 27000 до 46000.

В 1 г белка содержится 4 ккал, в 1 г углеводов тоже4, а в 1 г жира − целых 9 ккал.

СООТНОШЕНИЕ БЕЛКОВ, ЖИРОВ И УГЛЕВОДОВ

НАБОР МАССЫ

Углеводы: 40-60 %

Белки: 25-35 *%*

Жиры: 10-15 %

HOPMA

Углеводы: 30-50 *%*

Белки: 25-35 %

Жиры: 25-35 %

ПОХУДЕНИЕ

Углеводы: 10-20 *%*

Белки: 40-50 %

Жиры: 30-40 %

Домашнее задание

 На основе всего известного вам материала по органической химии составьте таблицу по следующему образцу:

Класс соединений	Типичный представитель	Область применения