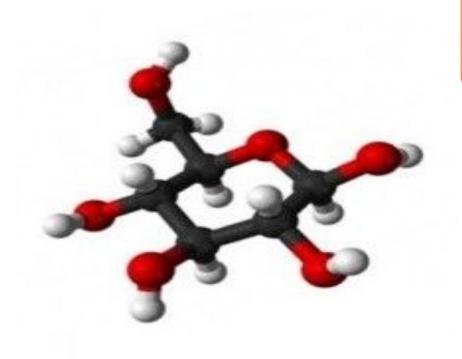

Сахарный диабет. Механизмы повреждения миокарда и гибели нефрона

Чагай Наталья Борисовна

врач-эндокринолог, доктор медицинских наук, профессор кафедры клинической физиологии, кардиологии с курсом интроскопии СтГМУ

Структура причин смерти при сахарном диабете 2 типа

Сахарный диабет. 2018 САХАРНЫЙ ДИАБЕТ В РОССИЙСКОЙ ФЕДЕРАЦИИ: РАСПРОСТРАНЕННОСТЬ, ЗАБОЛЕВАЕМОСТЬ, СМЕРТНОСТЬ, ПАРАМЕТРЫ УГЛЕВОДНОГО ОБМЕНА И СТРУКТУРА САХАРОСНИЖАЮЩЕЙ ТЕРАПИИ ПО ДАННЫМ ФЕДЕРАЛЬНОГО РЕГИСТРА САХАРНОГО ДИАБЕТА, СТАТУС 2017 Г. И.И. Дедов, М.В. Шестакова, О.К. Викулова*, А.В. Железнякова, М.А. Исаков


2015 г. Западная Европа - специализация в рамках кардиологии - специалист по СН

Этиопатогенез и терапия

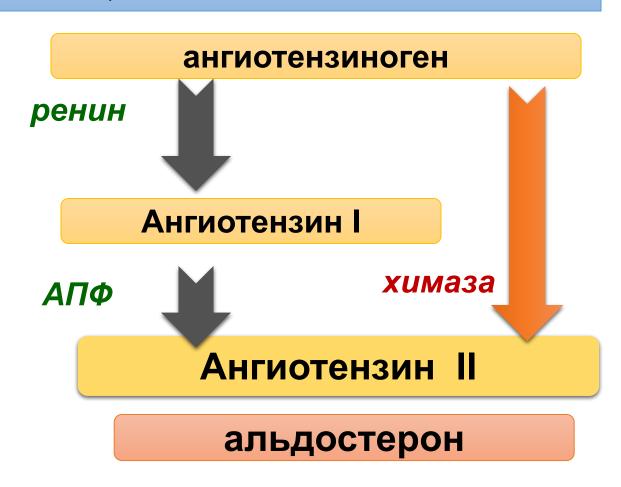
Механизмы и диагностика

Диабетическая микроангиопатия
 Гликирование белков

ишемия

НЕФРОН

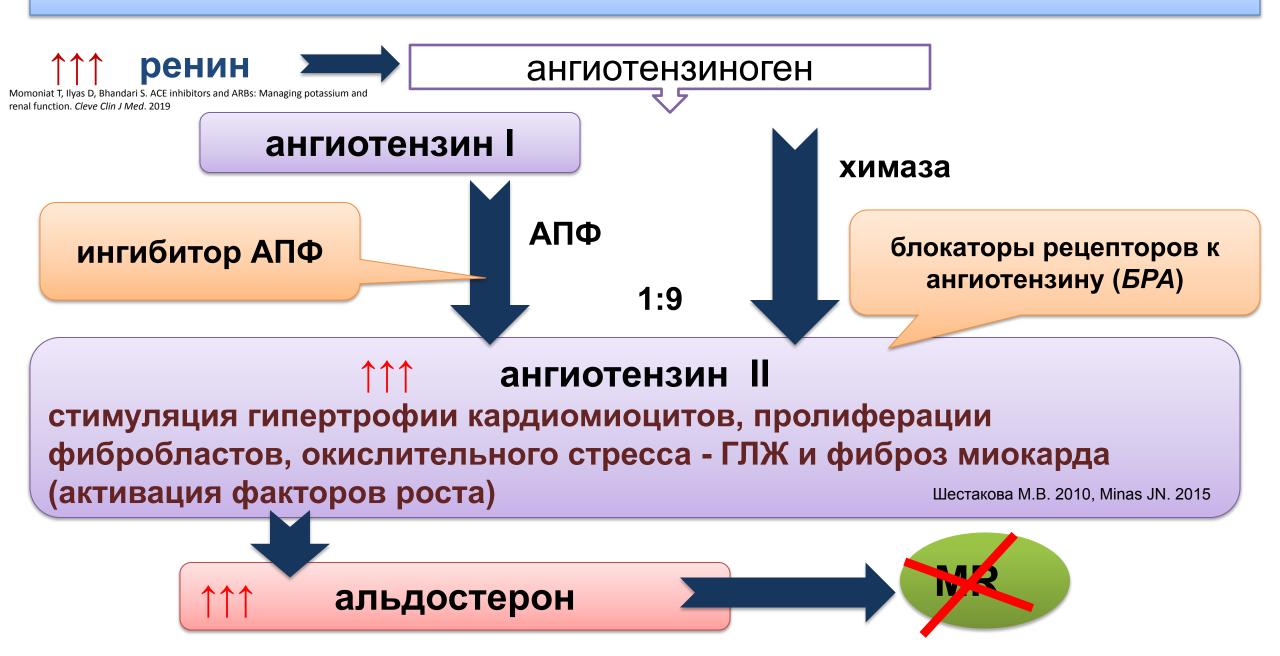
МИОКАРД: биохимические изменения в кардиомиоцитах, нарушение сократительной способности, возрастание аритмогенной готовности



глюкоза + аминогруппа = конечный продукт (крупный плотный белок)
Т1/2 гликированных белков : месяцы – 10 лет

Интратканевая автономная продукция ангиотензина II

1990-е гг. - теория о существовании тканевых (локальных) РАС



ангиоспазм – склероз

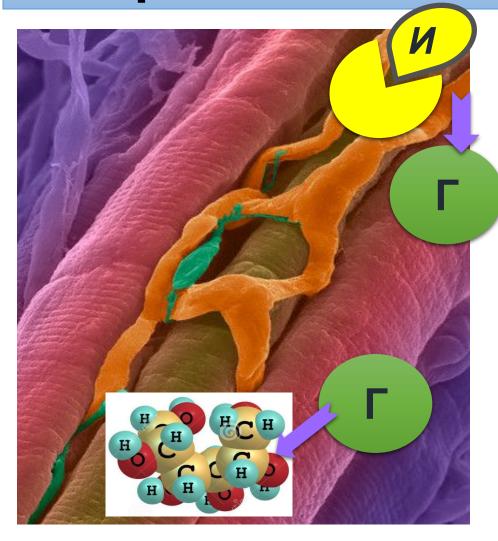
синтез провоспалительных цитокинов, активация факторов роста - гипертрофия или гиперплазии миоцитов, профибротические эффекты, повышенная жесткость

Блокаторы тканевой и глобальной систем ренин – ангиотензин, обратная связь

Ингибиторы SGLT2: нефропротекция и кардиопротекция

Wang YJ. [The mechanisms and clinical potential: sodium-glucose cotransporter 2 (SGLT-2) inhibitors treating diabetic kidney disease]. 2018

Garofalo Cet al. SGLT2 Inhibitors: Nephroprotective Efficacy and Side Effects. *Medicina (Kaunas*). 2019


ДИАБЕТИЧЕСКАЯ КАРДИОМИОПАТИЯ

аномальная структура и показатели миокарда в отсутствие ИБС, АГ

- субклинический период функциональные и структурные и нарушения, включая гипертрофию ЛЖ, фиброз
- исследование Framingham Heart Study показало, что при СД частота сердечной недостаточности в 5 раз выше у женщин, в 2 раза у мужчин (сравнение с лицами без СД)

Гипергликемия и кардиомиоцит

инсулинзависимые и независимые транспортеры *

Диабетическая кардиомиопатия

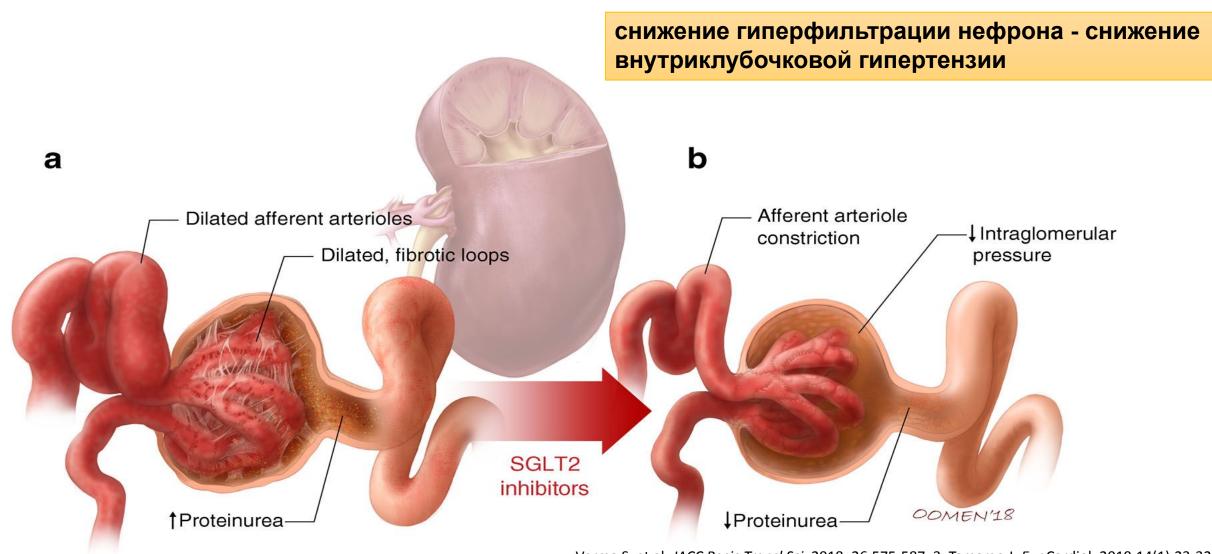
- полиоловой путь гликирования
- конечные продукты гликирования сшивание экстра- и внутриклеточных белков с участием эластина и коллагена нарушение сердечной релаксации и повышение жесткости миокарда**

*Кишкун А. А. Биологический возраст и старение. 2008. **Lee WS, Kim J. Diabetic cardiomyopathy: where we are and where we are going. *Korean J Intern Med*. 2017

Гипергликемия и кардиомиоцит

- митохондриальный унипортер Ca2 + (MCU) поглощение Ca2 + митохондриями
- снижение уровня MCU

Diaz-Juarez J, et al.


Expression of the mitochondrial calcium uniporter in cardiac myocytes improves impaired mitochondrial calcium handling and metabolism in simulated hyperglycemia. 2016.

• митохондриальная дисфункция - сократимости миокарда, апоптоз, фиброз миокарда

Lee WS, Kim J. Diabetic cardiomyopathy: where we are and where we are going. *Korean J Intern Med*. 2017.

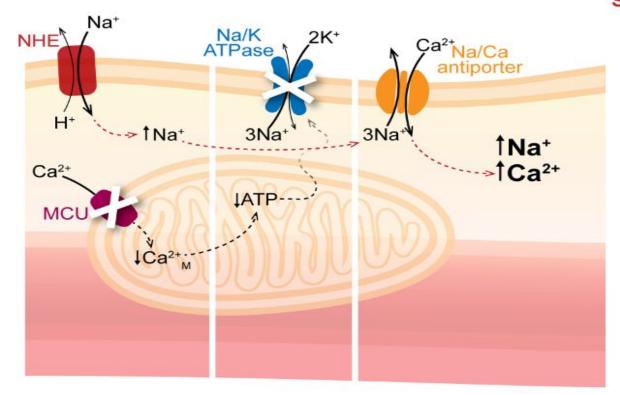
Ингибиторы SGLT2 и нефропротекция

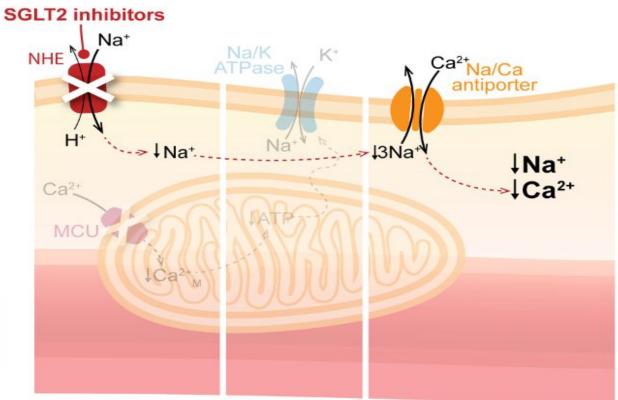
Verma S, et al. *JACC Basic Transl Sci*. 2018; 26:575-587. 3. Tamargo J. *Eur* Cardiol. 2019;14(1):23-32.

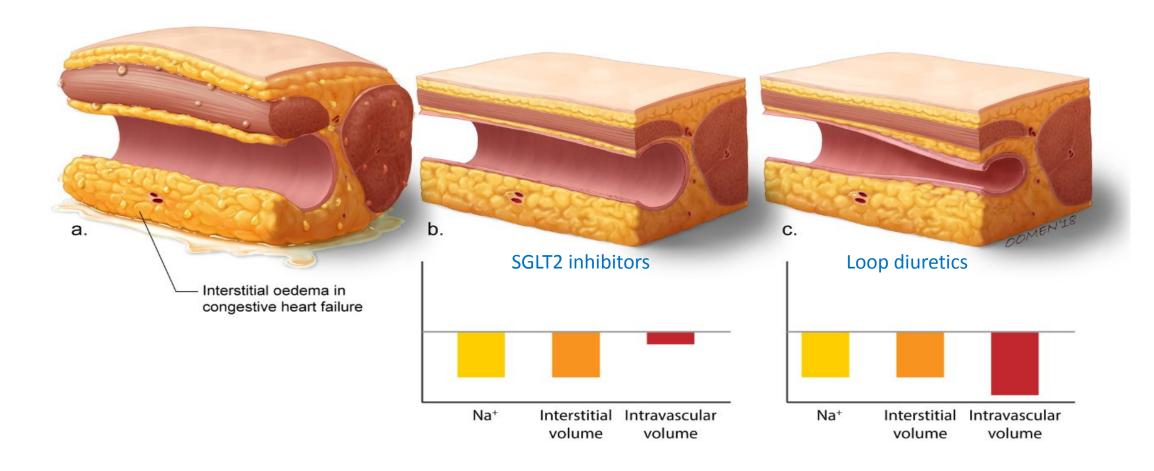
Wang YJ. [The mechanisms and clinical potential: sodium-glucose cotransporter 2 (SGLT-2) inhibitors treating diabetic kidney disease]. 2018

Garofalo Cet al. SGLT2 Inhibitors: Nephroprotective Efficacy and Side Effects. *Medicina (Kaunas)*. 2019

Кардиопротективные механизмы

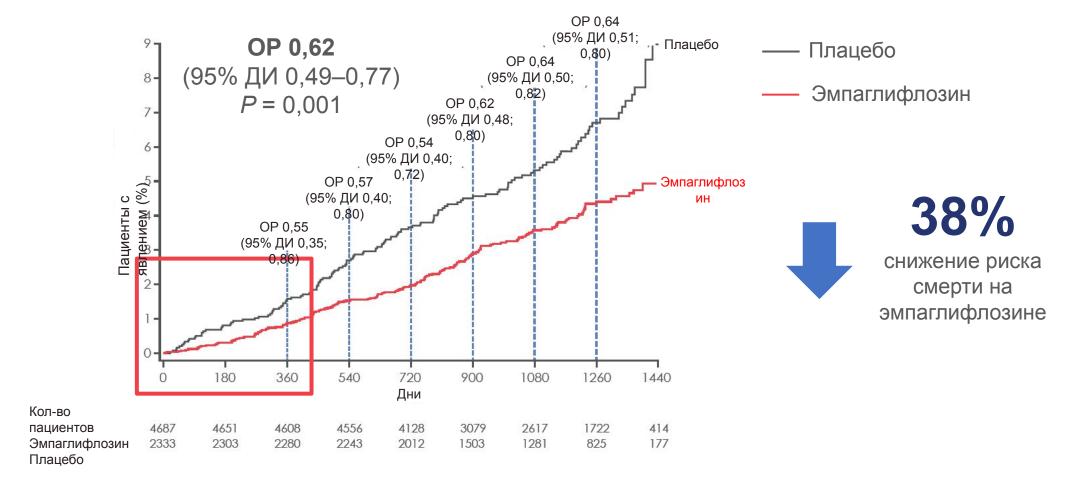

SGLT2 ингибитор


- Натрийурез
- Снижение пред- и постнагрузки на ЛЖ
- Снижение гликирования
- Ингибирование натриевоводородного обмена восстановление баланса кальция в митохондриях кардиомиоцитов


Ингибитор SGLT2 и прямое влияние на обмен Na + / H + в миокарде

Baartscheer A, Schumacher CA, Wust RC et al (2017) **Empagliflozin (Джардинс)** decreases myocardial cytoplasmic Na⁺ through inhibition of the cardiac Na⁺/H⁺ exchanger in rats and rabbits. Diabetologia 60:568–573

Ингибиторы SGLT2 могут дифференцировано регулировать интерстициальный и внутрисосудистый компартмент по сравнению с петлевыми диуретиками



Verma and McMurray (2018) Diabetologia DOI 10.1007/s00125-018-4670-7 © G. Oomen 2018

Исследование EMPA-REG OUTCOME® - снижение сердечнососудистой смертности на эмпаглифлозине

Снижение риска сердечно-сосудистой смерти при использовании эмпаглифлозина наблюдалось на раннем этапе и сохранялось на протяжении всего исследования¹

Исследование EMPEROR-Reduced

Рандомизированное двойное слепое плацебо-контролируемое исследование фазы III

Цель: Изучить безопасность и эффективность эмпаглифлозина по сравнению с плацебо в дополнение к стандартной терапии у пациентов с сердечной недостаточностью со сниженной фракцией выброса **Популяция:** СД2 и без СД2, возраст ≥18 лет, хроническая сердечная недостаточность (класс II – IV по NYHA)

Дизайн исследования 1-3 Эмпаглифлозин 10 мг 1р/день+ стандартная терапия* Плацебо 1 р/день+ стандартная терапия* Среднее время наблюдения = 16 месяцев

Ключевые конечные точки 1,2

КОМБИНИРОВАННАЯ ПЕРВИЧНАЯ КОНЕЧНАЯ ТОЧКА

Время до первого случая сердечнососудистой смерти или госпитализации по причине СН

ВТОРИЧНЫЕ КОНЕЧНЫЕ ТОЧКИ

- Первая и повторные госпитализации по причине СН
- Изменение от исходного уровня СКФ

^{*}Стандартная терапия согласно клиническим рекомендациям; СС, сердечно-сосудистый; СКФ - скорость клубочковой фильтрации; СН, сердечная недостаточность; ФВЛЖ, фракция выброса левого желудочка; NYHA, Нью-Йоркская кардиологическая ассоциация; СД2, сахарный диабет 2 типа
1. ClinicalTrials.gov. NCT03057977 (accessed Aug 2020); 2. Packer M et al. Eur J Heart Fail 2019;21:1270; 3. Data on file

Результаты по основным конечным точкам исследования EMPEROR-Reduced

EMPEROR-Reduced

Первичная конечная точка: подтвержденное событие СС смерти или госпитализация по причине сердечной недостаточности

Подтверждающий*

OP 0.75 (95% ДИ 0.65, 0.86) p<0.001

Вторичная конечная точка: подтверждённая первая и повторная госпитализации по причине СН

Подтверждающий[†]

OP 0.70 (95% ДИ 0.58, 0.85) p<0.001

Вторичная конечная точка: снижение СКФ от исходного значения

Подтверждающий[‡]

Разница снижения 1,73 мл/мин/1,73 м² в год (95% ДИ 1,1, 2,4) p <0,001

Эмпаглифлозин не показан для лечения сердечной недостаточности со сниженной фракцией выброса

СКФ - скорость клубочковой фильтрации; СС, сердечно-сосудистый; СН, сердечная недостаточность; ФВЛЖ, фракция выброса левого желудочка Packer M et al. Eur J Heart Fail 2019;21:1270

^{*}Регрессия Кокса с а = 0,0496; †Совместная модель уязвимости с а = 0,0496; ‡Модель случайных эффектов а = 0,001. Все модели включают ковариаты возраста, исходного значения СКФ, региона, исходного статуса диабета, пола и ФВЛЖ.

Благодарю за внимание!