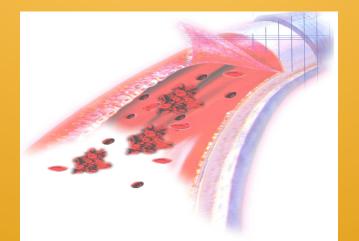
«Гармонично развитая личность - это личность, у которой нормально функционируют гормоны...»

Профессор **Леонид Громов** (украинский нейропсихофармаколог)


ФАРМАКОЛОГИЯ ПРОЦЕССОВ

ОБМЕНА ВЕЩЕСТВ

и системы крови

- □ Фармакология гормональных средств, их синтетических аналогов и антагонистов
- Фармакология витаминных препаратов
- Фармакология гемокоагуляции

"Функциональное единство организма не является следствием простой механической сборки его частей... Организм содержит две системы связи,...медленную почтовую систему химических посланий и быструю, телеграфную – нервных"

Дж. Бернал "Наука в истории"

Гормонотерапия

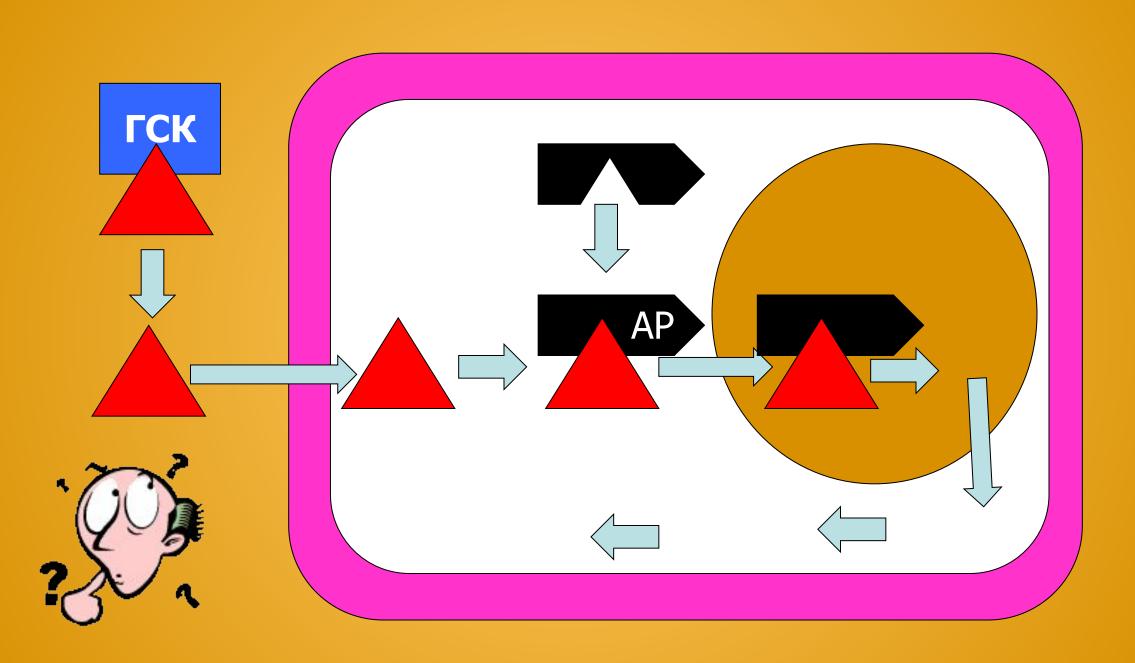
(гормональная терапия, медикаментозная терапия эндокринных заболеваний)

- это лечение гормональными препаратами с целью <u>замещения</u> утраченной гормональной функции, <u>восстановления</u> нарушенного гормонального баланса, а также достижения иммунодепрессивного, мочегонного и ряда других эффектов при лечении внутренних,

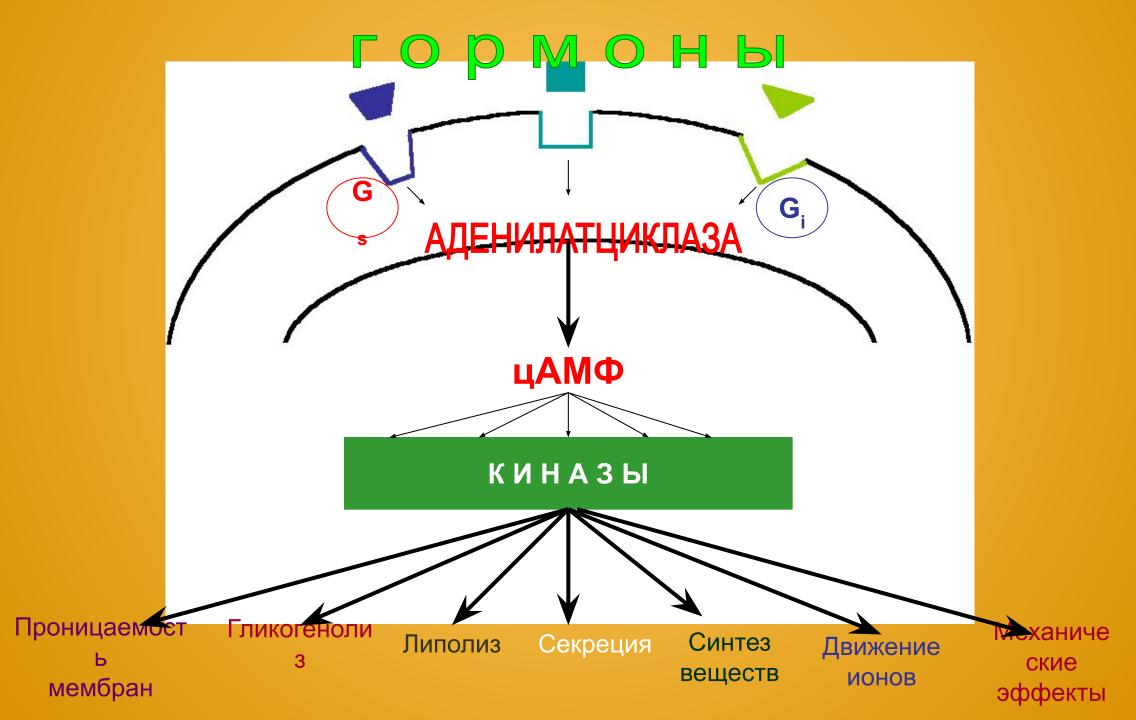
кожных и других заболеваний

• заместительная гормональная терапия

стимулирующая терапия


• антигормональная (противогормональная) терапия

гормональной терапии (медикаментозной терапии эндокринных заболеваний)


— **Заместительная гормональная терапия** - используется в случаях недостаточной (утраченной, потерянной) эндокринной функции (напр.: инсулин при сахарном диабете I типа);

- СТИМУЛИРУЮЩАЯ терапия использование гормональных препаратов (напр.кортикотропин при недостаточности коры надпочечников), а также синтетических препаратов (напр., глибенкламид при сахарном диабете II типа) при гипофункции эндокринной железы;
- антигормональная (противогормональная) терапия основана на принципах отрицательной обратной связи (напр., кломифенцитрат – антиэстрогенный препарат при гормонзависимых опухолях половой сферы у женщин).

Кафедра фармакологии и клинической фармакологии ДГМА

Общие механизмы действия гормональных препаратов пептидной и аминокислотной природы

Гормональные препараты щитовидной и паращитовидной желез

Гормональные препараты мужской и женской половой сферы

Гормональные препараты полжелулочной

поджелудочной железы

Гормональные препараты

надпочечников

ГОРМОНАЛЬНЫЕ ПРЕПАРАТЫ (ГП, греч. hormao – побуждать, приводить в движение)

ГП гипоталамуса и **гипофиза**

- □ кортикотропин (АКТГ)
- □ соматотропин
- □ тиротропин
- □ гонадотропин
- □ окситоцин
- □ вазопрессин
- □ питуитрин

ГП надпочечников (глюкокортикоидов)

- □ гидрокортизон
- □ преднизолон
- дексаметазон
- триамцинолон (кеналог)
- □ бетаметазон
- □ будесонид (пульмикорт)
- 🛮 флунизолид (ингакорт)

ГП щитовидной железы и антитиреоидные средства

- □ L-тироксин
- □ лиотиронин
- **преотом**
- □ мерказолил

ГП поджелудочной железы и синтетические противодиабетические средства

ГП мужской и женской половой сферы и анаболические средства

- □ препараты инсулина
- 🛮 метформин (глюкофаг)
- Потражения (маниния)
- 🛘 глимепирид (амарил)
- 🛮 акарбоза (глюкобай)

🛮 тестостерона пропионат

□ эстрон (фолликулин)

□ прогестерон

ретаболил

	Гормоны	Препараты
ГЛЮКОКОРТИКОИДЫ	Гидрокортизон Кортикостерон	Препараты естественных гормонов и их эфиров: • Гидрокортизон • Гидрокортизона ацетат Синтетические препараты: • Преднизолон • Дексаметазон • Триамцинолон • Синафлан (флюоцинолона ацетонид) • Флуметазона пивиат • Беклометазон Антагонисты глюкокортикоидов: • Метирапон • Мифепристон
минералокортикоиды	Альдостерон 11-Лезокси-	• Флудрокортизон (кортинефф) N

синтетический ГКС с выраженными

минералокортикоидными свойствами

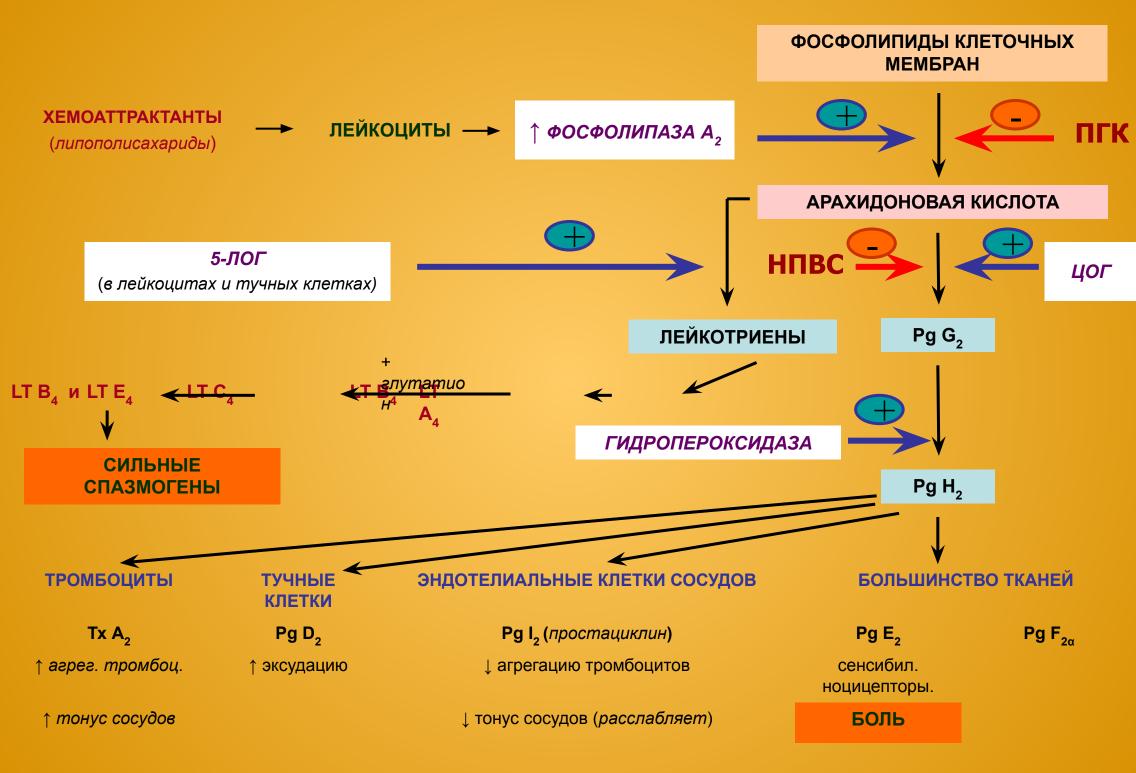
11-Дезокси-

кортикостерон

Механизмы противовоспалительного и антиаллергического действия препаратов глюкокортикоидов (ПГК)

NB!

УГНЕТАЮТ ВСЕ ФАЗЫ ВОСПАЛЕНИЯ,


независимо от вызвавшей его причины.

В противовоспалительном действии ПГК **ВЕДУЩИМ ЯВЛЯЕТСЯ ИНГИБИРОВАНИЕ ФОСФОЛИПАЗЫ А₂** и связанное с этим нарушение образования простагландинов и лейкотриенов.

Кроме того, ПГК стабилизируют клеточные мембраны, мембраны лизосом, уменьшают проницаемость капилляров, тормозят миграцию нейтрофилов и макрофагов в очаг воспаления и их фагоцитарную активность, угнетают пролиферацию фибробластов и синтез коллагена.

АНТИАЛЛЕРГИЧЕСКОЕ ДЕЙСТВИЕ объясняется торможением высвобождения гистамина в воспаленных тканях (ПГК препятствуют взаимодействию иммуноглобулина E с F_C-рецептором на мембранах тучных клеток и базофилов) и десенсибилизацией H₁-рецепторов к медиатору аллергии.

МЕТАБОЛИЗМ АРАХИДОНОВОЙ КИСЛОТЫ

ПГК В СТОМАТОЛОГИИ

в качестве противовоспалительных и антиаллергических средств

- Пульпит
- Периодонтит
- Заболевания слизистой воспалительного и аллергического характера
- ❖ Артрит и артроз височно-нижнечелюстного сустава
- ◆ Остеомиелит
- ◆ Периостит
- Пузырчатка
- Красный плоский лишай

Кафедра фармакологии и клинической фармакологии ДГМА

ФАРМАКОДИНАМИКА ГЛЮКОКОРТИКОИДНЫХ ПРЕПАРАТОВ ІІ

Углеводный

Стимуляция глюконеогенеза в печени, уменьшение проницаемости мембран для глюкозы, гипергликемия, глюкозурия вплоть до развития стероидного диабета.

ПГК являются контринсулярными гормонами!

Жировой

Перераспределение подкожной жировой клетчатки по кушингоидному типу вследствие того, что в тканях конечностей преобладает липолиз, а в тканях груди, шеи, лица, плечевого пояса — липогенез.

Белковый

Угнетение синтеза белка, усиление катаболизма, особенно в коже, в мышечной и костной тканях. Это проявляется похуданием, мышечной слабостью, атрофией кожи и мышц, кровоизлияниями, замедлением заживления ран. Как следствие распада белкового матрикса костей и гипокальциемии, развивается остеопороз и спонтанные переломы.

Водно-электролитный

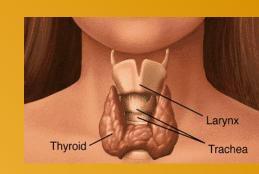
Замедление выделения из организма натрия и воды за счет увеличения их реабсорбции в дистальном отделе почечных канальцев. Усиление выведения калия.

Кальциевый

Угнетение всасывания кальция в кишечнике, что способствует его выходу из костной ткани. Усиление почечной экскреции Ca⁺⁺. Как следствие, могут развиваться гипокальциемия и гиперкальциурия.

Патологические состояния щитовидной железы

эндемический зоб, микседема, кретинизм


Гипофункция (снижение обмена веществ, функциональной способности систем и органов)

Гипертиреоз -

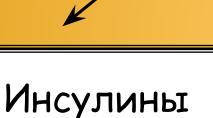
Тиреотоксикоз = диффузный токсический зоб = базедова болезнь, болезнь Грейвса

Гиперфункция (повышение обмена веществ, возбуждение симпатической нервной системы)

ПРЕПАРАТЫ ГОРМОНОВ ЩИТОВИДНОЙ ЖЕЛЕЗЫ И АНТИТИРЕОИДНЫЕ СРЕДСТВА

ЛЕКАРСТВЕННЫЕ СРЕДСТВА, ПРИМЕНЯЕМЫЕ ПРИ ГИПОФУНКЦИИ ЩИТОВИДНОЙ ЖЕЛЕЗЫ

- МОНОКОМПОНЕНТНЫЕ: лиотиронин (трийодтиронин), L-тироксин
- КОМБИНИРОВАННЫЕ: **тиреотом** (левотироксин + лиотиронин), **тиреокомб** (левотироксин + лиотиронин+йод).


Усиливают всасывание, транспорт и утилизацию глюкозы, аминокислот, кальция, энергетические процессы в тканях. Увеличивают потребление кислорода, повышают температуру тела. Снижают содержание холестерина в крови, усиливают эффекты адреналина.

ЛЕКАРСТВЕННЫЕ СРЕДСТВА, ПРИМЕНЯЕМЫЕ ПРИ ГИПЕРФУНКЦИИ ЩИТОВИДНОЙ ЖЕЛЕЗЫ (ТИРЕОСТАТИКИ):

- ОСНОВНАЯ ГРУППА:
 - препараты йода (калия йодид в больших дозах);
 - мерказолил (тиамазол)
- ВСПОМОГАТЕЛЬНЫЕ СРЕДСТВА: дийодтирозин, калия перхлорат

Препараты йода в больших дозах угнетают продукцию тиролиберина и тиротропина, в результате чего снижается синтез тиреоидных гормонов. Мерказолил тормозит йодирование тирозина, угнетая активность пероксидаз. Калия перхлорат нарушает поглощение йода железой. Дийодтирозин тормозит синтез тиреотропного гормона гипофиза.

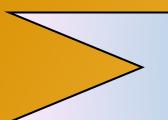
Противодиабетические средства

Пероральные противодиабетические средства

Классификация препаратов инсулина по длительности действия

1. Препараты инсулина короткого действия

```
(начало действия через 15-30мин, пик - через 1,5-2 часа, продолжительность действия 4-6 часов): актрапид (ЧИ) актрапид (СИ) хумулин-регуляр (ЧИ)
```


2. Препараты инсулина средней продолжительности действия (начало действия через 1,5-2 часа, пик - через 3-12 часов, продолжительность действия 8-12 часов):

протафан (СИ и ЧИ) инсулин-семиленте (СИ) хумулин (ЧИ)

3. Препараты инсулина пролонгированного действия (начало действия через 4-8 часов, пик - через 8-18 часов, продолжительность действия 20-30 часов):

инсулин-ультраленте (ГИ) хумулин-ультралонг (ЧИ) ультратард (ЧИ)

ЧИ - человеческий инсулин, СИ - свиной инсулин, ГИ - говяжий инсулин

Влияние инсулина на обмен веществ

Углеводный

СТИМУЛИРУЕТ:

- синтез гликогена;
- транспорт глюкозы в клетку;
- гликолиз;
- фосфорилирование глюкозы

тормозит:

- гликогенолиз;
- глюконеогенез

Жировой

СТИМУЛИРУЕТ:

- синтез триглицеридов;
- синтез жирных кислот;
- поступление глюкозы в жировые клетки;
- активность липопротеинлипазы

тормозит:

- липолиз;
- образование кетоновых тел

Белковый

СТИМУЛИРУЕТ:

- синтез белка;
- поглощение АК

тормозит:

• распад белка

СИНТЕТИЧЕСКИЕ АНТИДИАБЕТИЧЕСКИЕ СРЕДСТВА

А. Производные сульфонилмочевины:

І поколения

II поколения

- **толбутамид (орина, бутамид)**
- карбутамид (букарбан)
- **толазамид (толиназ)**
 - Б. Бигуаниды:
- фенформин (диботин)
- буформин (глибутид)
- метформин (глюкофаг)
 - В. Ингибиторы альфа-гликозидазы:
 - акарбоза (глюкобай).
 - Г. Производные тиазолидиндиона:
- циглитазон;
- энглитазон
- троглитазон

- глибенкламид (манинил)
- гликлазид (предиан)
- глипизид (глибинез)

МЕХАНИЗМЫ ГИПОГЛИКЕМИЧЕСКОГО ДЕЙСТВИЯ СИНТЕТИЧЕСКИХ АНТИДИАБЕТИЧЕСКИХ СРЕДСТВ I

Средства, стимулирующие высвобождение эндогенного инсулина (производные сульфонилмочевины):

Блок ATФ-зависимых K⁺-каналов β-клеток островков Лангерганса

Деполяризация мембран β-клеток

Открывание потенциалзависимых Ca²⁺-каналов β-клеток

Вхождение Си²⁺ внутрь β-клеток

выделение инсулина

МЕХАНИЗМЫ ГИПОГЛИКЕМИЧЕСКОГО ДЕЙСТВИЯ СИНТЕТИЧЕСКИХ АНТИДИАБЕТИЧЕСКИХ СРЕДСТВ II

Производные бигуанида

- способствуют поглощению (утилизации) глюкозы мышцами, не приводя к образованию гликогена. За счет стимуляции анаэробного гликолиза, в мышцах накапливается молочная кислота;
- угнетают глюконеогенез в печени;
- задерживают всасывание углеводов в кишечнике

Производные тиазолидиндиона

• повышают чувствительность тканей-мишеней к инсулину

Ингибиторы а-гликозидазы

✓ нарушают образование простых сахаров из сложных в кишечнике, а значит, тормозят их всасывание

ПРЕПАРАТЫ МУЖСКИХ ПОЛОВЫХ ГОРМОНОВ (АНРОГЕНЫ)

ПРЕПАРАТЫ МУЖСКИХ ПОЛОВЫХ ГОРМОНОВ (андрогены) – лекарственные средства, содержащие гормоны, вырабатываемые мужскими половыми железами, и их синтетические аналоги.

- 1. АНДРОГЕНЫ: тестостерон (омнадрен, небидо), местеролон (провирон)
- 2. АНТИАНДРОГЕННЫЕ СРЕДСТВА:
 - блокаторы андрогенных рецепторов: ципротерон (андрокур)
 - ингибиторы 5α-редуктазы: финастерид

ВЗАИМОДЕЙСТВУЮТ С ЦИТОЗОЛЬНЫМИ АНДРОГЕННЫМИ РЕЦЕПТОРАМИ В ОРГАНАХ-МИШЕНЯХ (ПРЕДСТАТЕЛЬНОЙ ЖЕЛЕЗЕ, СЕМЕННИКАХ), ИЗМЕНЯЯ ИХ КОНФОРМАЦИЮ. ПРИ ЭТОМ ИЗМЕНЯЮТСЯ ФУНКЦИИ ДНК И РНК, ПРИВОДЯЩИЕ К СИНТЕЗУ РАЗЛИЧНЫХ ФУНКЦИОНАЛЬНЫХ БЕЛКОВ

- стимулируют развитие первичных и вторичных половых признаков
- обеспечивают репродуктивную функцию
- регулируют сперматогенез, потенцию, либидо

показания

- инфантилизм
- некоторые формы импотенции
- бесплодие
- гормонозависимые опухоли половой сферы и молочных желез у женщин

ПРИМЕНЕНИЕ В СТОМАТОЛОГИИ

КАК СРЕДСТВА ВСПОМОГАТЕЛЬНОЙ КОРРЕКЦИИ В КЛИМАКТЕРИЧЕСКИЙ ПЕРИОД:

- поражения слизистой полости рта
- глоссалгия

ПРЕПАРАТЫ ЖЕНСКИХ ПОЛОВЫХ ГОРМОНОВ

ПРЕПАРАТЫ ЖЕНСКИХ ПОЛОВЫХ ГОРМОНОВ – лекарственные средства, содержащие гормоны, вырабатываемые женскими половыми железами, и их синтетические аналоги.

- 1. ЭСТРОГЕНЫ: **эстрон** (фолликулин)**, эстрадиол** (эстрожель)**, гексэстрол** (синэстрол
- 2. ГЕСТАГЕНЫ: прогестерон (утрожестан), дидрогестерон (дуфастон), тиболон (ливиал)
- 3. ЭСТРОГЕНЫ + ГЕСТАГЕНЫ: фемостон (дидрогестерон+эстроген), климодиен (диеногест+эстроген)
- 4. АНТИГОРМОНАЛЬНЫЕ СРЕДСТВА: антиэстрогены кломифенцитрат, антигестагены мифепристон

ЭСТРОГЕНЫ И ГЕСТАГЕНЫ ПРОНИКАЮТ В КЛЕТОЧНОЕ ЯДРО, АКТИВИРУЮТ СИНТЕЗ РАЗЛИЧНЫХ ВИДОВ РНК И БЕЛКА. АНТИЭСТРОГЕННЫЕ СРЕДСТВА СВЯЗЫВАЮТСЯ С РЕЦЕПТОРАМИ ЭСТРОГЕНОВ В ГИПОТАЛАМУСЕ И ЯИЧНИКАХ, ЯВЛЯЮТСЯ КОНКУРЕНТНЫМИ АНТАГОНИСТАМИ ЭСТРОГЕНОВ

показания

- гормональная недостаточность при инфантилизме, постмеузальный остеопороз (эстрогены)
- сохранение беременности при угрозе выкидыша, нарушения менструального цикла (гестагены)
- гормонозависимые опухоли половой сферы и молочных желез (антиэстрогены)

ПРИМЕНЕНИЕ В СТОМАТОЛОГИИ

КАК СРЕДСТВА ВСПОМОГАТЕЛЬНОЙ КОРРЕКЦИИ В КЛИМАКТЕРИЧЕСКИЙ ПЕРИОД:

- поражения слизистой полости рта
- глоссалгия

ПРЕПАРАТЫ АНАБОЛИЧЕСКИХ СТЕРОИДОВ

ПРЕПАРАТЫ АНАБОЛИЧЕСКИХ СТЕРОИДОВ – синтетические производные мужских половых гормонов, которые обладают значительно сниженной андрогенной и выраженной анаболической активностью

- 1. ПРОИЗВОДНЫЕ АНДРОСТАНА: метандиенон (метандростенолон)
- 2. ПРОИЗВОДНЫЕ ЭСТРЕНА: нандролон (ретаболил)

ПРОНИКАЮТ В ЦИТОПЛАЗМУ КЛЕТОК ОРГАНОВ-МИШЕНЕЙ, ТРАНСПОРТИРУЮТСЯ В ЯДРО; ВЗАИМОДЕЙСТВУЯ С ДНК И РНК, РЕГУЛИРУЮТ СИНТЕЗ СТРУКТУРНЫХ И ФЕРМЕНТНЫХ БЕЛКОВ В СОСТАВЕ ЦИТОХРОМА, СУКЦИНАТДЕГИДРОГЕНАЗЫ, АРГИНАЗЫ, ГЛЮКУРОНИДАЗЫ, А ТАКЖЕ ГОРМОНОВ ПОЛИПЕПТИДНОЙ СТРУКТУРЫ

- увеличивают массу тела и содержания белков плазмы крови
- усиливают эритропоэз
- стимулируют активность сократительных белков миокарда
- обеспечивают антикатаболический эффект

ПОКАЗАНИЯ

- гипотрофия и кахексия различного генеза
- остеопороз
- инфаркт миокарда в фазе реконвалесценции
- апластическая анемия

ПРИМЕНЕНИЕ В СТОМАТОЛОГИИ

С ЦЕЛЬЮ СТИМУЛЯЦИИ БЕЛКОВОГО СИНТЕЗА И УСКОРЕНИЯ ОБРАЗОВАНИЯ КОСТНОЙ МОЗОЛИ:

- пародонтоз на фоне нейроэндокринной патологии, ослабленном пищеварении, потере белка
- перелом костей челюстей (особенно в старческом возрасте или у ослабленных больных)

ВОЗ констатирует:

Согласно данным Всемирной организации здравоохранения (2008-й год), состояние здоровья человека лишь на 15% зависит от организации медицинской службы, столько же приходится на генетические особенности, остальное определяется образом жизни - прежде всего (не в последнюю очередь) режимом питания, в том числе наличием в рационе достаточного количества витаминов.

ФАРМАКОЛОГИЯ ВИТАМИННЫХ ПРЕПАРАТОВ

ВИТАМИННЫЕ СРЕДСТВА — ЛС, по химической структуре представляющие собой витамины, их аналоги или предшественники

ВОДОРАСТВОРИМЫЕ:

- КИСЛОТА АСКОРБИНОВАЯ (С)
- БИОФЛАВОНОИДЫ (Р: рутин, кверцетин)
- КИСЛОТА НИКОТИНОВАЯ (РР)
- ТИАМИНА ХЛОРИД ИЛИ БРОМИД (В ,)
- РИБОФЛАВИН (В_¬)
- КИСЛОТА ПАНТОТЕНОВАЯ (В_к)
- ПИРИДОКСИНА ГИДРОХЛОРЙД (В)
- ЦИАНОКОБАЛАМИН (В₁₉)
- КИСЛОТА ФОЛИЕВАЯ $(\dot{\mathbb{B}}_c)$
- КИСЛОТА ПАНГАМОВАЯ (В₁₅)
- БИОТИН (Н)

жирорастворимые:

- РЕТИНОЛА АЦЕТАТ (А)
- ЭРГОКАЛЬЦИФЕРОЛ (D)
- ТОКОФЕРОЛА АЦЕТАТ (Е)
- ВИКАСОЛ (К)

ПОЛИВИТАМИННЫЕ:

- ПОЛИВИТАМИНЫ (ундевит, ревит, витанова)
- ПОЛИВИТАМИНЫ + микроэлементы (олигал)
- ПОЛИВИТАМИНЫ + макроэлементы (пиковит, прегнавит)
- ПОЛИВИТАМИНЫ + микро- и макроэлементы (дуовит, супрадин, юникап)
- ПОЛИВИТАМИНЫ + БАВ (амитетравит)
- ПОЛИВИТАМИНЫ + микро- и макроэлементы + БАВ (квадевит, биовиталь)

МАКРОЭЛЕМЕНТАМИ принято считать те химические элементы, содержание в организме которых составляет более 0,005% массы тела. К макроэлементам относятся водород, углерод, кислород, азот, натрий, магний, фосфор, сера, хлор, калий, кальций.

МИКРОЭЛЕМЕНТАМИ являются химические элементы, содержащиеся в организме в очень малых количествах. Их содержание не превышает 0,005% массы тела, а концентрация в тканях - не более 0,000001%. Среди всех микроэлементов в особую группу выделяют так называемые незаменимые микроэлементы.

НЕЗАМЕНИМЫЕ МИКРОЭЛЕМЕНТЫ — микроэлементы, регулярное поступление которых с пищей или водой в организм абсолютно необходимо для нормальной его жизнедеятельности. Незаменимые микроэлементы входят в состав ферментов, витаминов, гормонов и других биологически активных веществ. Незаменимыми микроэлементами являются железо, йод, медь, марганец, цинк, кобальт, молибден, селен, хром, фтор.

Витаминная терапия

фармакодинамическая

ЗАМЕСТИТЕЛЬНАЯ ВИТАМИНОТЕРАПИЯ – использование витаминных препаратов при гипо- и авитаминозах экзогенного или эндогенного характера.

АДАПТАЦИОННАЯ ВИТАМИНОТЕРАПИЯ — использование витаминных препаратов для облегчения процессов адаптации (приспособления к меняющимся условиям существования и для активации ферментных систем стареющего организма).

ФАРМАКОДИНАМИЧЕСКАЯ ВИТАМИНОТЕРАПИЯ — использование витаминных препаратов для лечения заболеваний, не относящихся к гипо- и авитаминозам.

NB!

При ЗАМЕСТИТЕЛЬНОЙ И АДАПТАЦИОННОЙ витаминотерапии дозы витаминных препаратов соответствуют СУТОЧНОЙ ПОТРЕБНОСТИ организма либо превышают ее НЕ БОЛЕЕ ЧЕМ В 2-3 РАЗА. При ФАРМАКОДИНАМИЧЕСКОЙ витаминотерапии дозы витаминопрепаратов ЗНАЧИТЕЛЬНО ВЫШЕ.

ФАРМАКОЛОГИЯ ПРЕПАРАТОВ ВИТАМИНОВ ГРУППЫ «В»

- □ ТИАМИНА ХЛОРИД (В₁): является кофактором дегидрогеназ ПВК, альфакетоглутаровой кислоты, транскетолазы. Обладает кардио- и нейротропным действием, является синергистом инсулина.
 - ПРИМЕНЕНИЕ: комплексная терапия глоссалгии, невралгии тройничного и лицевого нерва, гингивита, стоматита, пародонтита, множественного кариеса
- □ РИБОФЛАВИН (В₂): входит в состав коферментов ФАД и ФМН. Участвует в тканевом дыхании, образовании и разрушении моноаминов, способствует синтезу эритропоэтина.
 - ПРИМЕНЕНИЕ: трещины губ, хейлит, генерализованный пародонтит, глоссит, гингивит, красная волчанка
- Пиридоксина гидрохлорид (В₆): входит в состав ферментов, участвующих в регуляции обмена. Способствует транспорту аминокислот, активируя процессы их дезаминирования, переаминирования и декарбоксилирования.
 - ПРИМЕНЕНИЕ: неврит и невралгия тройничного нерва, глоссалгия, гингивит, пародонтоз (особенно на фоне язвенной болезни, хронического гепатита, назначения антибиотиков)
- ЦИАНОКОБАЛАМИН (В₁₂): превращается в оксикобаламин и кобамамид, который является кофактором редуктазы фолиевой кислоты. В костном мозге стимулирует размножение эритробластов и их созревание, активирует синтез РНК, ДНК, белка, участвует в построении миелина.
 - ПРИМЕНЕНИЕ: комплексная терапия пародонтита, стоматита, глосалгии, невралгии тройничного нерва, красного плоского лишая

ФАРМАКОЛОГИЯ АСКОРБИНОВОЙ КИСЛОТЫ (С)

ВЫСТУПАЕТ В РОЛИ ДОНАТОРА Н⁺ ПРИ ВОССТАНОВЛЕНИИ СУБСТРАТА И АКЦЕПТОРА Н⁺ ПРИ ОКИСЛЕНИИ СУБСТРАТА

- повышает активность металлоферментов и способствует превращению кальцидиола в кальцитриол
- способствует синтезу коллагена, гиалуроновой кислоты, интерферона, стероидных гормонов, иммуноглобулинов
- способствует превращению фолиевой кислоты в активную форму фолиниевую кислоту
- облегчает биоусвоение железа
- оказывает антиоксидантный эффект

показания

- гипоксия, метаболический и дыхательный ацидоз
- инфекционные заболевания
- геморрагические явления
- воспалительные и аллергические реакции

ПРИМЕНЕНИЕ В СТОМАТОЛОГИИ

- пародонтоз
- стоматит
- гингивит (особенно при повышенной кровоточивости)
- множественный кариес
- гнойно-воспалительные процессы челюстно-лицевой области

ФАРМАКОЛОГИЯ РЕТИНОЛА (А)

РЕТИНОЛА АЦЕТАТ, РЕТИНОЛА ПАЛЬМИТАТ, ТИГАЗОН (ЭТРЕТИНАТ), РОАККУТАН (ИЗОТРЕТИНОИН), КАРОТИН, КАРОТОЛИН способствуют:

- синтезу соматомединов;
- синтезу половых гормонов, а также интерферона, иммуноглобулина А, лизоцима;
- синтезу ферментов эпителиальных тканей, предупреждающих преждевременную кератинацию;
- активации рецепторов для кальцитриола (активного метаболита витамина D);
- синтезу родопсина в палочках сетчатки, необходимого для сумеречного зрения.

показания

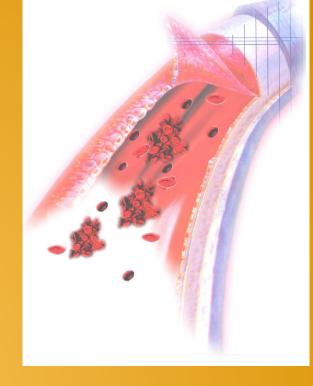
- ксерофтальмия, гемералопия, кератомаляция
- хронический гепатит
- желчнокаменная болезнь
- нарушении эпителизации кожи и слизистых оболочек

ПРИМЕНЕНИЕ В СТОМАТОЛОГИИ

- гиперкератоз тканей полости рта (лейкоплакия)
- эрозивно-язвенные процессы в стадии эпителизации
- ОЖОГИ
- отморожения
- комплексная терапия воспалительно-дистрофической формы пародонтита

ФАРМАКОЛОГИЯ КАЛЬЦИФЕРОЛОВ (D)

дистальные отделы тонкого кишечника → лимфатическая система → кровь

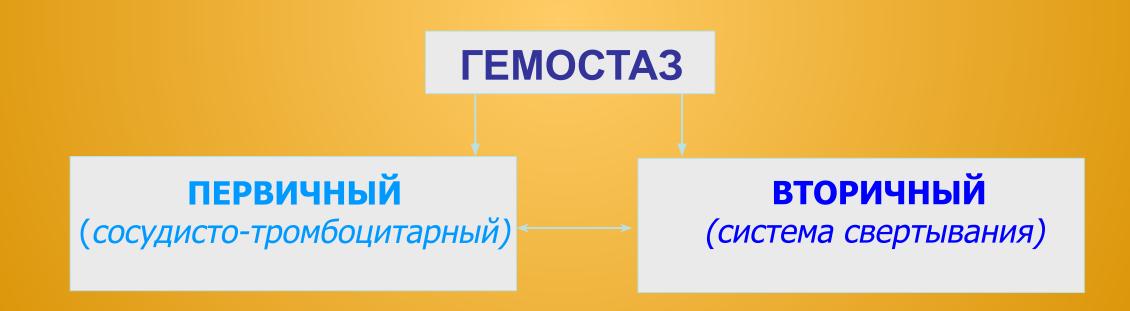

ПЕЧЕНЬ
$$D_3$$
 → КАЛЬЦИДИОЛ (25-ГХКФ) 25-оксиЭКФ ← D_2

ПОЧКИ КАЛЬЦИДИОЛ → **КАЛЬЦИТРИОЛ** (1,25-ДИГХКФ)

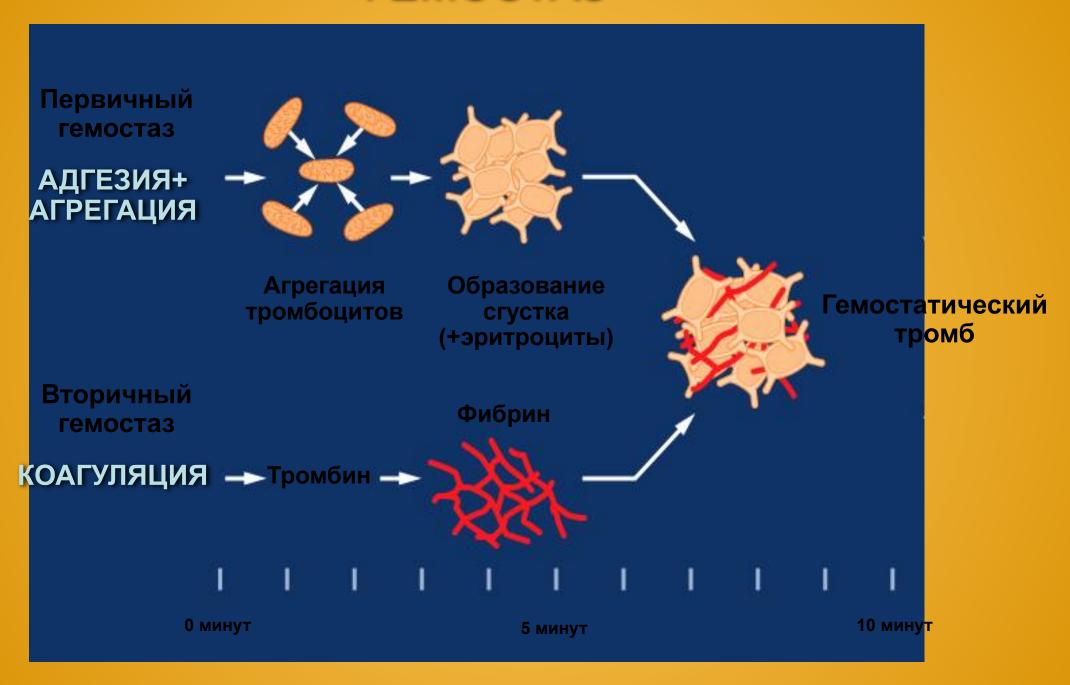
- повышает проницаемость эпителия кишечника для кальция
- способствует образованию белков стромы костей
- активирует щелочную фосфатазу в почках, что усиливает реабсорбцию кальция
- способствует кальцификации костной ткани и дентина

ПРИМЕНЕНИЕ В СТОМАТОЛОГИИ

- профилактика и лечение кариеса
- стимуляция процессов заживления костей челюстей при переломах
- пародонтит



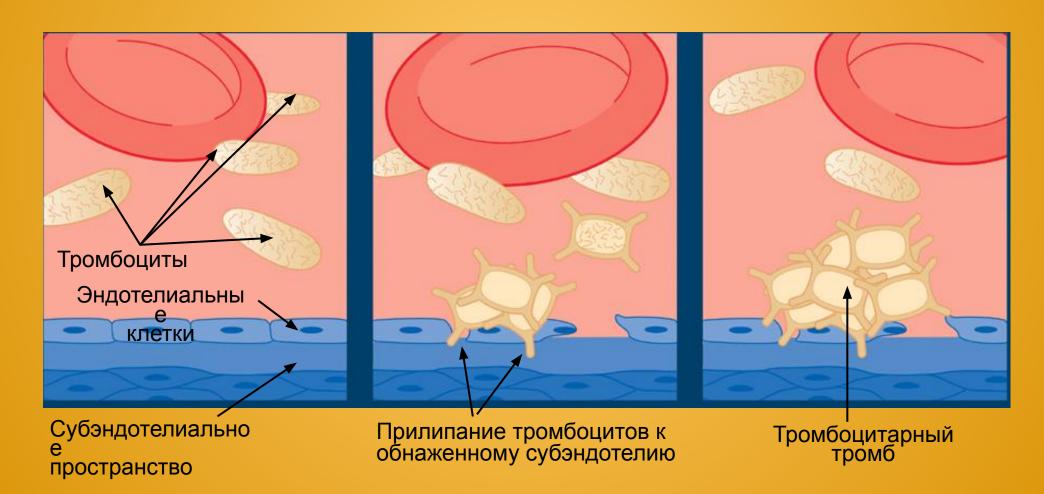
ФАРМАКОЛОГИЯ ГЕМОКОАГУЛЯЦИИ



ГЕМОСТАЗ

Гемостаз — биофизические и биохимические процессы, которые обеспечивают в организме предупреждение и остановку кровотечений.

ГЕМОСТАЗ



Тромбоцитарный ответ

Обычные тромбоциты в просвете сосуда

Активация тромбоцитов и их адгезия к поврежденному эндотелию

Агрегация тромбоцитов и образование тромба

ГЕМОСТАТИЧЕСКАЯ ТЕРАПИЯ

Средства, стимулирующие агрегацию и адгезию тромбоцитов

Средства, уменьшающие активность фибринолитической системы

Коагулянты

КЛАССИФИКАЦИЯ АНТИГЕМОРРАГИЧЕСКИХ СРЕДСТВ

1. КОАГУЛЯНТЫ:

- □ антагонисты антикоагулянтов непрямого действия викасол (витамин К)
- □ антагонисты антикоагулянтов прямого действия протамина сульфат, протамина гидрохлорид
- □ препараты кальция кальция хлорид, кальция глюконат
- □ факторы свертывания эмоклот (VIII), аймафикс (IX), новосевен (VII)
- □ гемостатическая с амбеном
 □ гемостатическая с амбеном
- □ растительные гемостатики арники настойка, перца водяного экстракт
- 2. СТИМУЛЯТОРЫ АГРЕГАЦИИ И АДГЕЗИИ ТРОМБОЦИТОВ (АГРЕГАНТЫ) этамзилат (дицинон), серотонина адипинат

3. ИНГИБИТОРЫ ФИБРИНОЛИЗА:

- □ аминокислоты кислота аминокапроновая
- □ ингибиторы протеаз апротинин (гордокс, контрикал)

ФАРМАКОДИНАМИКА ГЕМОСТАТИКОВ

Викасол

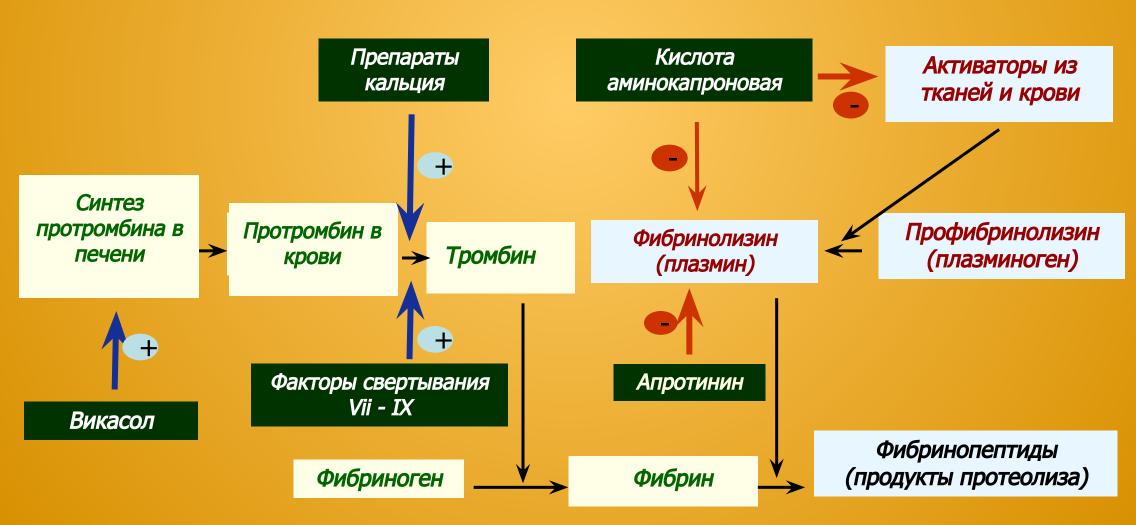
Повышает синтез протромбина и других факторов свертывания (VI, VII, IX, X) преимущественно в печени. Активирует синтез АТФ, креатинфосфата, образование фибриногена. Действие наступает через 12-18 часов после введения.

Протамина сульфат

Соединяясь с гепарином, инактивирует его. Назначают преимущественно для нейтрализации гепарина в случаях его передозировки.

Антиагреганты

Этамзилат нормализует агрегацию тромбоцитов, образование тромбопластина. Снижает проницаемость стенки сосудов. Серотонина адипинат активирует 5-HT₂- рецепторы тромбоцитов, вызывая их агрегацию и адгезию.


Препараты кальция

Стимулируют образование тромбопластина, превращение протромбина в тромбин, полимеризацию фибрина. Снижают проницаемость стенки сосудов.

Антифибринолитики

Угнетают активацию профибринолизина и в некоторой степени — уже образовавшегося фибринолизина, повышают адгезивные свойства тромбоцитов.

НАПРАВЛЕННОСТЬ ДЕЙСТВИЯ ГЕМОСТАТИКОВ

АНТИТРОМБОТИЧЕСКАЯ ТЕРАПИЯ

Средства, угнетающие агрегацию и адгезию тромбоцитов

Средства, повышающие активность фибринолитической системы

Антикоагулянты

КЛАССИФИКАЦИЯ АНТИТРОМБОТИЧЕСКИХ СРЕДСТВ

1. АНТИКОАГУЛЯНТЫ:

- □ непрямого действия (антагонисты витамина К) фениндион (фенилин),варфарин (варфарекс), аценокумарол (синкумар)
- □ прямого действия гепарин, дальтепарин (фрагмин), эноксапарин (клексан), надропарин (фраксипарин)

2. ИНГИБИТОРЫ АГРЕГАЦИИ ТРОМБОЦИТОВ (АНТИАГРЕГАНТЫ):

- □ антагонисты АДФ клопидогрел (плавикс), тиклопидин (тиклид)
- □ блокаторы синтеза тромбоксана кислота ацетилсалициловая (аспекард)
- □ ингибиторы фосфодиэстеразы дипиридамол (курантил)
- □ блокаторы тромбоцитарных гликопротеиновых рецепторов GP lb/llla эптифибатид (интегрилин), тирофибан (агграстат)
- 3. ФИБРИНОЛИТИКИ стрептокиназа (стрептаза), альтеплаза (актилизе), тенектеплас (метализе)
- 4. СЕЛЕКТИВНЫЕ ИНГИБИТОРЫ АКТИВИРОВАННОГО ФАКТОРА X (X_A)

 фондапаринукс (арикстра)

ФАРМАКОДИНАМИКА АНТИТРОМБОТИЧЕСКИХ СРЕДСТВ

Гепарины

Необратимо угнетают II, VII, IX-XII факторы свертывания тормозит агрегацию крови, образование тромбоцитов, тромбопластина, тромбина Обладают фибрина. противовоспалительным эффектом. Расширяют сосуды. Усиливают Нарушают диурез. всасывание жира, снижают концентрацию холестерина липопротеидов; понижают уровень caxapa В крови. Ингибируют гиалуронидазу, снижая проницаемость сосудистой Угнетают стенки. реакцию Расширяют антиген-антитело. бронхи

Антагонисты витамина к

Угнетают синтез протромбина и других факторов свертывания (VI, VII, IX, X) преимущественно в печени.

Ингибиторы ФДЭ

Накапливают цАМФ тромбоцитах тормозят высвобождение И3 НИХ тромбоксана A_2 , что приводит к торможению агрегации тромбоцитов И удлинению Повышают срока их жизни. антиагрегантную активность простагландина Е,

Антагонисты АДФ

Ингибируют связывание АДФ с рецептором на поверхности тромбоцита и активацию комплекса GP IIb/IIIa, подавляя АДФ-зависимое связывание фибриногена с мембраной тромбоцитов

Фибринолитики

Активируют переход плазминогена крови или кровяного сгустка в плазмин. Плазмин растворяет сгустки фибрина, а также приводит к деградации фибриногена и других белков плазмы крови.

НАПРАВЛЕННОСТЬ ДЕЙСТВИЯ АНТИТРОМБОТИЧЕСКИХ СРЕДСТВ

