
Общие принципы инженерных расчетов

• Все элементы сооружений или машин должны работать без угрозы поломки или опасного изменения сечений и формы под действием внешних сил, т.е. они должны обладать свойствами прочности, жесткости и устойчивости.

- Размеры этих элементов в большинстве случаев определяет расчет на *прочность*.
- Прочность свойство материала сопротивляться разрушению под действием внутренних силовых факторов, возникающих под воздействием внешних сил.
- Свойство конструкции выполнять назначение, не разрушаясь в течение заданного времени.

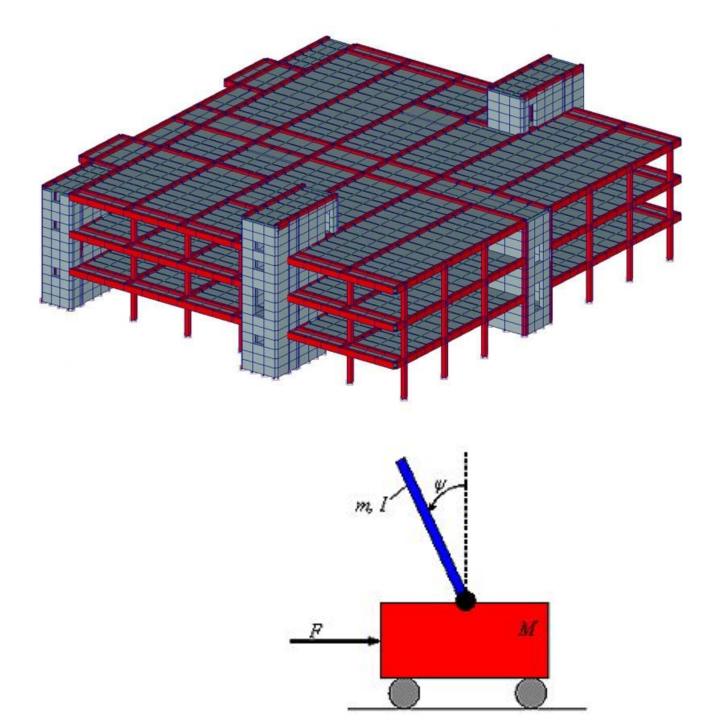
жесткость — способность конструктивных элементов деформироваться при внешнем воздействии без существенного изменения геометрических размеров.

При расчете на жесткость размеры детали определяются из условия, чтобы при действии рабочих нагрузок изменение ее формы и размеров происходило в пределах, не нарушающих

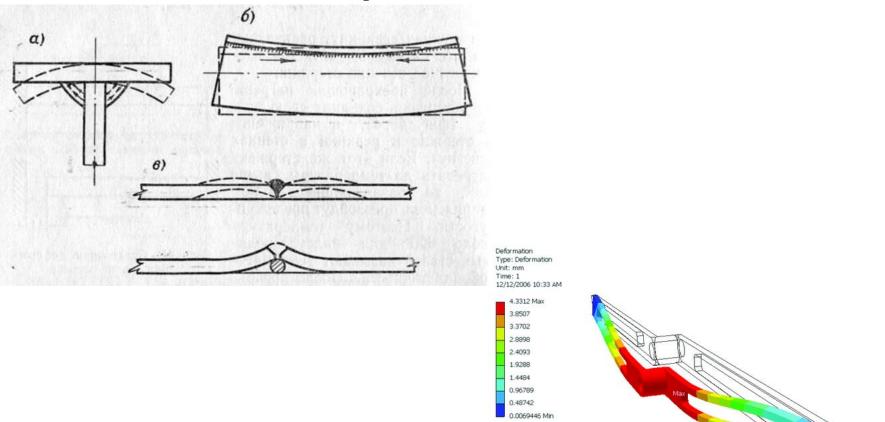
цию конструкции.

Сварная рама увеличивает жесткость конструкции Ребро жесткости

системы сохранять текущее состояние при наличии внешних воздействий.

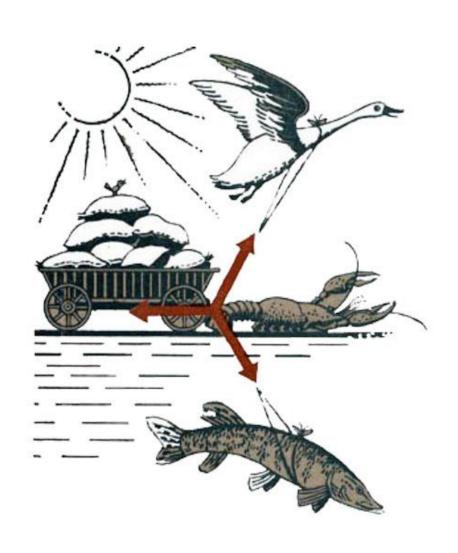

• Расчет на устойчивость должен обеспечить сохранение элементом конструкции *первоначальной* (расчетной) формь

Расчетная модель


- Моделью называют совокупность представлений, условий и зависимостей, описывающих объект.
- При выборе (построении) модели учитывают наиболее значимые и отбрасывают несущественные факторы, которые не оказывают достаточно заметного влияния на условия функционирования элемента конструкции (детали).

- Для упрощения расчетов элементов конструкций приходится прибегать к некоторым допущениям и гипотезам о свойствах материалов и характере деформаций.
- Материалы, из которых изготовляют конструкции, считают **однородными**, **сплошными** и имеющими одинаковые свойства во всех направлениях (изотропными).

- Основные допущения о характере деформации:
- перемещения, возникающие в упругих телах под действием внешних сил, очень малы по сравнению с размерами рассматриваемых элементов;
- перемещения точек упругого тела прямо пропорциональны действующим нагрузкам (элементы конструкций, подчиняющихся этому допущению, называют линейно-деформируемыми);
- внешние силы действуют на тело независимо друг от друга (принцип независимости действия сил).


Перемещения

Линейная деформация

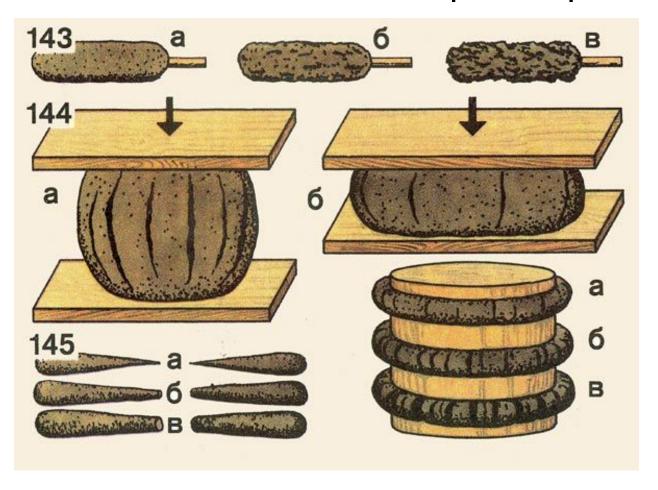
Принцип независимости сил

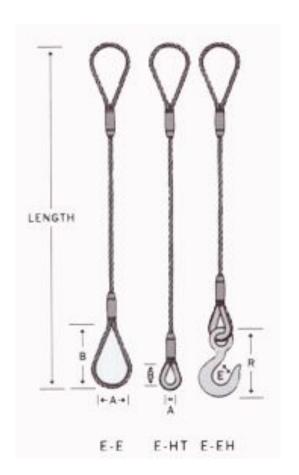
 Расчетная модель материала наделяется следующими свойствами:

• упругостью,

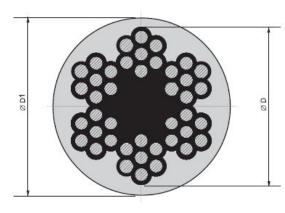
• пластичностью,

• ползучестью.


Упругость называют свойство тела (детали) восстанавливать свою форму после снятия внешней нагрузки.



Пластичностью называют свойство тела (детали) сохранять после разгрузки полностью или частично деформацию, полученную при нагружении.


Пластичность глиняного раствора

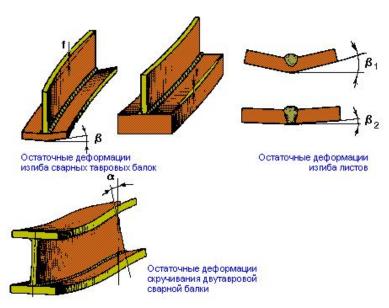
Ползучестью называют свойство тела (детали) увеличивать со временем деформацию при действии внешних сил (например, вытяжка канатов).

- Все реальные элементы конструкций и машин под действием на них внешних сил изменяют форму и размеры деформируются.
- При этом изменяется межмолекулярное взаимодействие и внутри тела возникают силы, которые противодействуют деформации и стремятся вернуть частицы тела в прежнее положение. Эти внутренние силы называют силами упругости.

Деформация (от <u>лат.</u> *deformatio* — «искажение») — изменение взаимного положения частиц тела, связанное с их <u>перемещением</u> относительно друг друга.

Виды деформаций

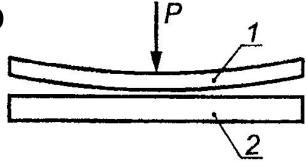
упругие



неупругие пластические

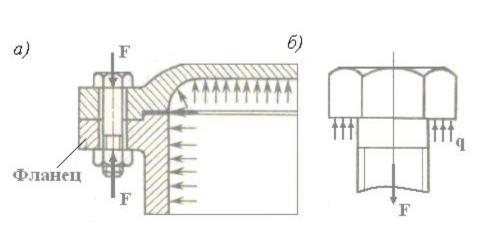
- Нарушением прочности конструкции считают не только ее разрушение или появление трещин, но и возникновение остаточных деформаций.
- При проектировании размеры элементов конструкций назначают таким образом, чтобы возникновение остаточных деформаций было исключено.

• Упрощения в геометрии детали, приводя ее к схеме:


• стержня (бруса),

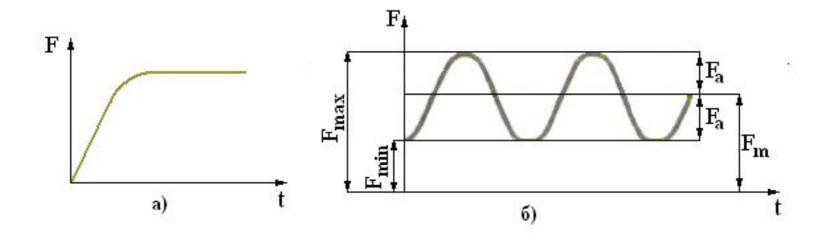
• пластинки,

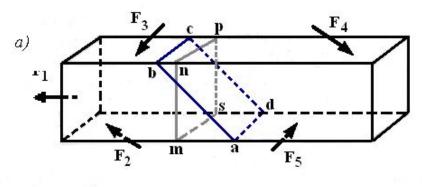
• оболочки, массива (пространственного тела).

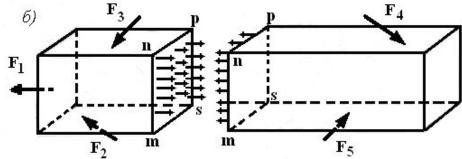

• Силы, действующие на тело, подразделяют условно

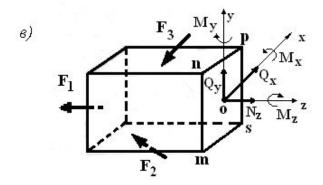
• сосредоточенные,

• распределенные


• объемные (массовы



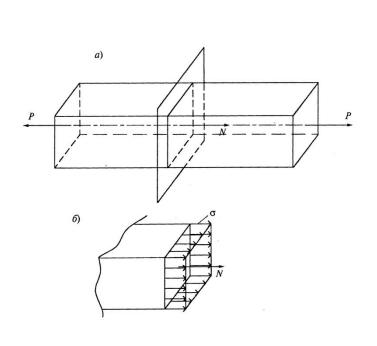

 По характеру изменения во времени нагрузки подразделяют на статические и переменные.

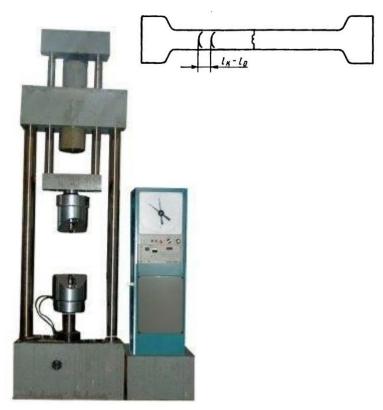


- Внутренние силы это силы межатомного взаимодействия, возникающие при воздействии на тело внешних нагрузок и стремящиеся противодействовать деформации.
- Для расчета элементов конструкций на прочность, жесткость и устойчивость необходимо с помощью метода сечений определить возникающие внутренние силовые факторы.

Метод сечений

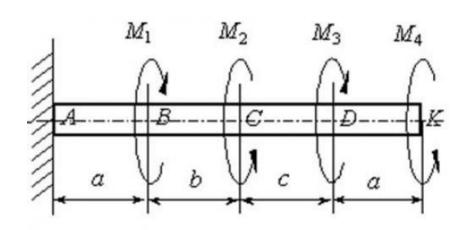
 Поместим в точку О систему координат xyz. Разложим главный вектор и главный момент на составляющие, направленные по координатным осям:

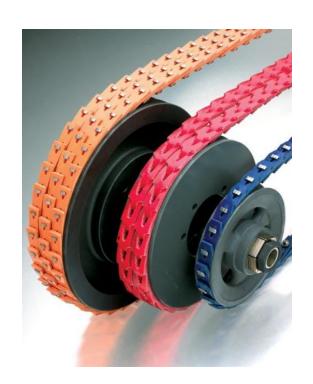

$$R = N_{\mathcal{X}} + Q_{\mathcal{Y}} + Q_{\mathcal{Z}}$$


$$\overset{\scriptscriptstyle{\square}}{M}=\overset{\scriptscriptstyle{\square}}{M}_{\chi}+\overset{\scriptscriptstyle{\square}}{M}_{y}+\overset{\scriptscriptstyle{\square}}{M}_{z}$$

- Составляющая N_z, называемая продольной (нормальной) силой, вызывает деформацию растяжения или сжатия.
- Составляющие Q_x и Q_y перпендикулярны нормали и стремятся сдвинуть одну часть тела относительно другой, их называют поперечными силами.
- Моменты $M_{_X}$ и $M_{_y}$ изгибают тело и называются **изгибающими**.

• Момент M_{z} Скручивающий тепо называют крутящим \mathbf{F}_{3} \mathbf{M}_{y}


Составляющая N_z , называемая продольной (нормальной) силой, вызывает деформацию растяжения или сжатия.



Момент *М* _г скручивающий тело называют *крутящим Кручение*

Моменты M_x и M_y изгибают тело и называются изгибающими

Изгиб

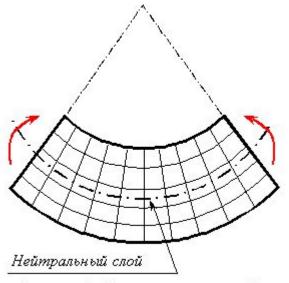


Рисунок 2 - Чистый прямой изгиб.

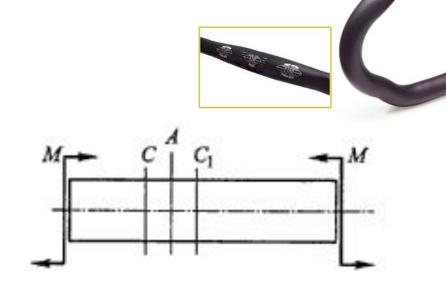
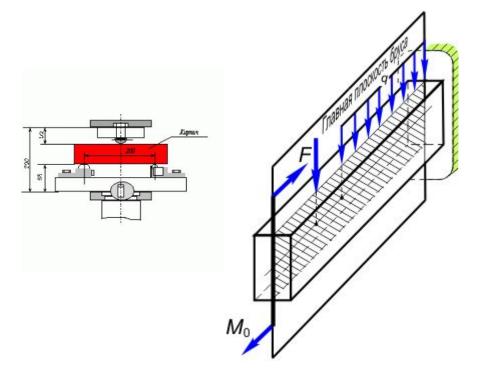
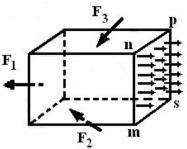



Рис. 8.25

Составляющие Q_x и Q_y называют **поперечными** силами.

Поперечный изгиб.

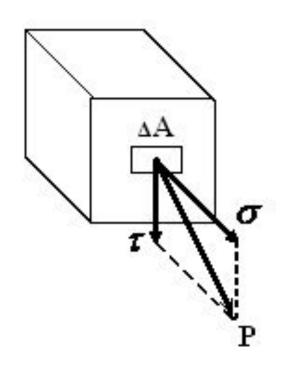
Отыскать составляющие главного вектора и главного момента внутренних сил позволяют условия равновесия:


$$\sum F_{ix} = 0$$
; $\sum F_{iy} = 0$; $\sum F_{iz} = 0$

$$\sum M_{ix} = 0$$
; $\sum M_{iy} = 0$; $\sum M_{iz} = 0$

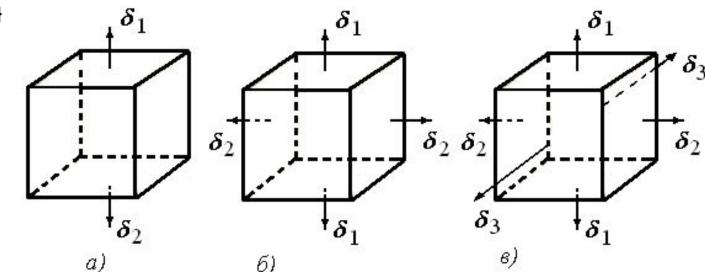
- Для определения внутренних силовых факторов необходимо:
- Мысленно провести сечение в интересующей нас точке конструкции или стержня.
- Отбросить одну из отсеченных частей и рассмотреть равновесие оставленной части.
- Составить уравнения равновесия для оставленной части и определить из них значения и направления внутренних силовых факторов.

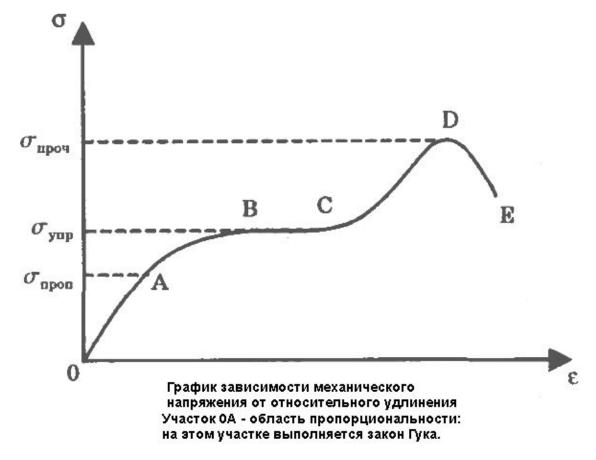
• Эффективными характеристиками для оценки нагруженности деталей будет интенсивность внутренних сил взаимодействия — напряжение и деформация.


• внутренние силы непрерывно распределены по встата ію.

- В сечении выделим элементарную площадку ΔA, а равнодействующую внутренних сил на этой площадке обозначим ΔR.
- Отношение равнодействующей внутренних сил Δ*R* на площадке Δ*A* к величине площади этой площадки называется средним напряжением на данной площадке,

 $p_{cp} = \frac{\Delta R}{\Delta A}$


$$\sigma = \lim_{\Delta A \to A} \frac{\Delta N}{\Delta A}; \tau = \lim_{\Delta A \to A} \frac{\Delta Q}{\Delta A}.$$



• Для измерения напряжений в Международной системе единиц (СИ) служит ньютон на квадратный метр, названный паскалем Па (Па = H/м²). Так как эта единица очень мала и пользоваться ею неудобно, применяют кратные единицы (кН/м², МН/м² и H/MM^2). Отметим, что 1 $MH/M^2 = 1M\Pi a = 1$ 1H/MM.

- Для исследования напряженного состояния в окрестности исследуемой точки тела обычно выделяют элемент в виде бесконечно малого параллелепипеда. На его гранях действуют внутренние силы, заменяющие воздействие удаленной части тела и вызывающие появление напряжений.
- виды напряженного состояния в точке: линейное (одноосное) только одно главное напряжение отлично от нуля, а два других равны нулю (а);
- плоское (двухосное) два главных напряжения отличны от нуля (δ);

• объемное (трехосное) — все главные напряжения отличі в. я. я.

$$[\sigma] = rac{\sigma_{nped}}{[n]}; \ [\tau] = rac{ au_{nped}}{[n]},$$