
Что такое информатика

ЛЕКЦИЯ 2

План лекции

- 1. Структура информатики.
- 2. Тело знаний компьютинга.
- 3. Из истории отечественной информатики и вычислительной техники.

1.1 О термине «Информатика»

Кибернетика – наука об общих законах получения, хранения, передачи и преобразования информации в сложных управляющих системах. При этом под управляющими системами понимаются не только технические, любые биологические, НО И административные и социальные системы.

- 1) Современная кибернетика часть информатики, которая включает такие теоретические разделы, как «Исследование операций», «Распознание образов», «Искусственный интеллект».
- 2) Кибернетика полностью растворилась в информатике и считать ее отдельной наукой нецелесообразно.

«Информатика»

- Теория научно-информационной деятельности («информатика-1»).
- Наука о вычислительных машинах и их применении («информатика-2»).
- Фундаментальная наука об информационных процессах в природе, обществе и технических системах («информатика-3»).

«Informatics»

Computer Science занимается теорией и методами обработки информации в цифровых компьютерах, проектированием компьютерного оборудования и программного обеспечения, а также приложениями компьютеров. В Computer Science не принято включать информационные системы, программную инженерию и многое другое.

Information Science связана с анализом, сбором, классификацией, манипуляциями, хранением, поиском, перемещением, распространением и защитой информации.

Computational Science включает в себя использование вычислительного оборудования, сетей, алгоритмов, программирования, баз данных и других предметно-ориентированных знаний для моделирования физических явлений на компьютерах.

Теоретическая информатика		Средства информатизации		
		Технические	Программные	
Теория алгоритмов Теория автоматов Теория информации Математическая логика Теория формальных языков и грамматик Теория сложности вычислений и др.	**	Средства извлечения информации Средства обработки информации Средства передачи информации Средства хранения информации Средства представления информации	Операционные системы Драйверы Системы программирования Пакеты прикладных программ и др.	

Информационные системы и технологии

Не ориентированные на конкретную предметную область

Технологии и системы обработки текстовой, графической, мультимедийной информации

Технологии и системы программирования, моделирования

Интернет-технологии

Технологии и системы защиты информации

Технологии и системы компьютерного моделирования

Технологии и системы анализа данных

и др.

Ориентированные на конкретную предметную область

Информационные технологии и системы в управлении предприятиями

Географические информационные системы

Информационные технологии и системы в медицине

Информационные технологии и системы в образовании

Информационные технологии и системы в генетике

и др.

Информационная технология – совокупность методов, технических и программных средств, с помощью которых выполняются разнообразные операции по обработке информации.

Как комплексная научная дисциплина информатика связана:

- с философией и психологией через учение об информации и теорию познания;
- с математикой через теорию математического моделирования, дискретную математику, математическую логику и теорию алгоритмов;
- с лингвистикой через учение о формальных языках и знаковых системах;
- с кибернетикой через теорию информации и теорию управления;
- с физикой и химией, электроникой и радиотехникой через «материальную» часть компьютера и информационных систем.

1.2 Тело знаний компьютинга

Компьютинг рассматривается как интегральная дисциплина, охватывающая широкий спектр специализированных научно-прикладных дисциплин (поддисциплин), таких, например, как компьютерные науки, искусственный интеллект, компьютерные сети, вычислительная математика, технологии баз данных, информационные системы, мультимедиа, биоинформатика и пр.»

Компьютинг имеет пять базовых составляющих:

- •компьютерные науки (Computer Science)
- •компьютерная инженерия (Computer Engineering)
- •информационные системы (Information Systems)
- •информационные технологии (Information Technology)
- •программная инженерия (Software Engineering)

Компьютерные науки

- 1. Алгоритмы и теория сложности.
- 2. Архитектура и организация вычислительных систем.
- 3. Базы данных.
- 4. Графика и визуализация.
- 5. Дискретные структуры.
- 6. Информационная безопасность.
- 7. Интеллектуальные системы.
- 8. Компьютерные сети и телекоммуникации.

- 9. Методы вычислений.
- 10.Операционные системы.
- 11.Основы разработки программного обеспечения.
- 12.Основы теории систем.
- 13. Параллельные и распределенные вычисления.
- 14.Программная инженерия.
- 15. Разработки на базе платформ.
- 16.Социальные и профессиональные вопросы.
- 17. Человеко-машинное взаимодействие.
- 18. Языки программирования.

Информационные технологии

- 1. Базы данных.
- 2. Веб-системы и технологии.
- 3. Интегративное программирование и технологии.
- 4. Информационная безопасность.
- 5. Компьютерные сети.
- 6. Математика и статистика.
- 7. Основы информационных технологий.

- 8. Основы программирования.
- 9. Системное администрирование и поддержка.
- 10. Системное интегрирование и архитектуры.
- 11. Социальные и профессиональные вопросы.
- 12. Технологические платформы.
- 13. Человеко-машинное взаимодействие.

Программная инженерия

- 1. Верификация и аттестация программного обеспечения.
- 2. Качество программного обеспечения.
- 3. Моделирование и анализ программного обеспечения.
- 4. Основы компьютинга.
- Основы математики и инженерии.

- 6. Проектирование программного обеспечения.
- 7. Профессиональная практика.
- 8. Процессы разработки программного обеспечения.
- 9. Управление программными проектами.
- 10. Эволюция программного обеспечения

Компьютерная инженерия

- 1. Алгоритмы.
- 2. Архитектура и организация вычислительных систем.
- 3. Вероятность и статистика.
- 4. Встраиваемые системы.
- 5. Дискретные структуры.
- 6. Инженерия компьютерных систем.
- 7. Компьютерные сети.
- 8. Обработка цифровых сигналов.
- 9. Операционные системы.
- 10. Основы программирования.
- 11. Системы баз данных.
- 12. Социальные и профессиональные вопросы.

- 12. Программная инженерия.
- 13. Инженерия компьютерных систем.
- 14. Компьютерные сети.
- 15. Обработка цифровых сигналов.
- 16. Операционные системы.
- 17. Основы программирования.
- 18. Системы баз данных.
- 19. Программная инженерия.
- 20. Проектирование и изготовление.
- 21. Цепи и сигналы.
- 22. Цифровая логика.
- 23. Человеко-машинное взаимодействие.
- 24. Электроника.

Информационные системы

Операционные системы.

10.

1.	Алгоритмы и сложность.	11.		
2.	 Анализ и проектирование информационных систем. 	12	информационных систем.	
		12.	Основы программирования.	
3.	Архитектура и организация вычислительных систем.	13.	Оценка производительности в предметной области.	
4.	Архитектура предприятия.	14.	Сетевой компьютинг.	
5.	Базы данных и управление информацией.	15.	Социальные и профессиональные вопросы в информационных системах.	
6.	Графика и визуализация.	16. Управление информационными		
7.	Интеллектуальные системы.		системами.	
8.	Ключевые спецификации предметной области.	17.	Управление проектированием информационных систем.	
9.	Модели предметной области.	18.	Языки программирования.	

1.3 Из истории отечественной информатики и вычислительной техники

Советские и российские ученые, конструкторы, специалисты внесли большой вклад в развитие информатики. Следует напомнить, что, вопреки ситуации, существующей в настоящее время, на первом этапе развития, вплоть до середины 70-х гг. прошлого века, большая часть компьютерной техники программного обеспечения в стране отечественной разработки и отечественного производства.

Алексей Андреевич Ляпунов

В начале 50-х гг. А. А. Ляпунов разработал первые учебные курсы по программированию, а в 1952/53 учебном году он прочитал студентам МГУ первый курс под названием «Принцип программирования».

В 1953 г. он создал операторный метод, одну из первых в мире нотаций языков программирования

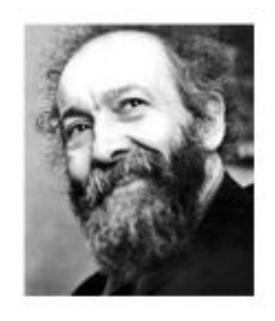
аппарат описания алгоритмов (язык логических схем).

А. А. Ляпунов сформулировал постановку задачи автоматизации программирования. Эта оригинальная постановка была успешно использована в первых отечественных трансляторах, называвшихся тогда программирующими программами.

Леонид Витальевич Канторович

В 1953 – 1954 гг. Л. В. Канторович разработал технологию крупноблочного программирования, которая также давала обозримое описание программ и обеспечивала степень формализации, достаточную для исследования синтаксических структур программ и создания программирующих программ.

Михаил Львович Цетлин


М. Л. Цетлин впервые поставил вопрос о возможности моделирования с помощью простейших технических средств сложных форм поведения. Эти идеи послужили началом создания теории коллективного поведения технических систем, намного опередившей аналогичные исследования в других странах.

Андрей Петрович Ершов

А. П. Ершову принадлежат фундаментальные результаты в теории операторных схем, в теории схем программ с распределенной памятью, а также начальная формулировка теории схем параллельных программ, развитая впоследствии его учениками. Он – автор одной из первых в мире программирующих программ, той концептуальной основы, на которой строятся современные системы программирования.

Виктор Михайлович Глушков

В его творческом наследии важное место занимает: теория цифровых автоматов; методология синтеза цифровых автоматов, позволившая эффективно применить абстрактно-автоматные и другие алгебраические методы для решения конкретных задач проектирования вычислительной техники; построение теории дискретных преобразователей и общей теории вычислительных машин и систем; создание математических основ перспективных технологий в программировании и алгебры алгоритмов.

А.А.Ляпунов

Л.В.Канторович

М.Л.Цетлин

А.П.Ершов

В.М.Глушков

Сергей Алексеевич Лебедев

Под его руководством были созданы многие ЭВМ, включая одну из лучших в мире для своего времени ЭВМ БЭСМ-6.

Всеволод Сергеевич Бурцев

Главный конструктор советских суперЭВМ. Руководил созданием многопроцессорного вычислительного комплекса «Эльбрус-2».

Юрий Яковлевич Базилевский

Создатель ЭВМ «Стрела-1» и ряда электронных комплексов для нужд обороны.

Виктор Владимирович Пржиялковский

Главный конструктор ряда ЭВМ серии «Минск», одной из самых массовых ЭВМ в СССР до появления ЕС ЭВМ. Генеральный конструктор ЕС ЭВМ.

С.А.Лебедев

В.С.Бурцев

Ю.Я.Базилевский

В.В.Пржиялковский

Заключение

Информатика – огромная сфера науки и приложений, которая в XXI веке превзошла по уровню значимости многие более традиционные сферы. Работа ИТ-специалиста, независимо от конкретного профиля его деятельности, требует знаний как теоретических (научных) основ информатики, так и многих приложений информатики – информационных технологий.