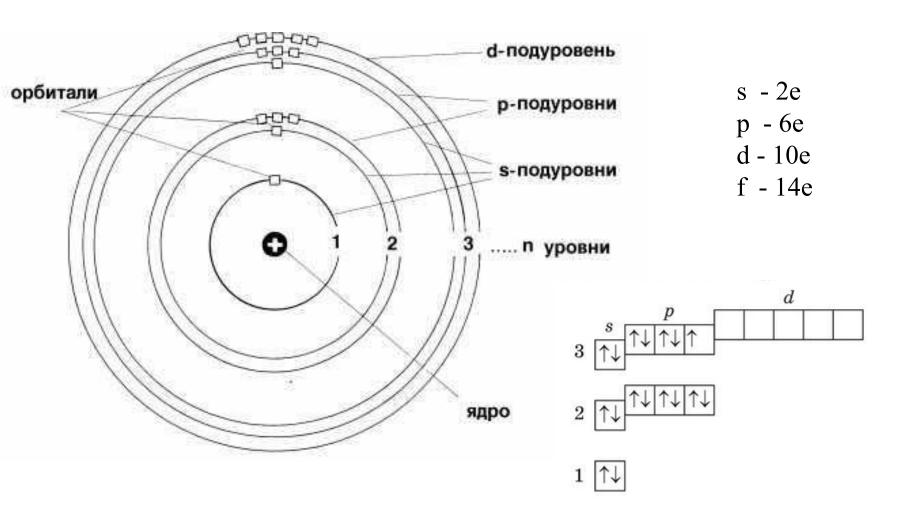
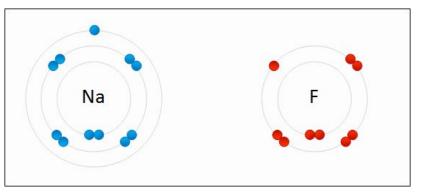

## Строение вещества

## Простейшая модель атома




Ядро=протоны+нейтроны Атомный номер — число протонов в ядре Масса электрона =  $1.6 \cdot 10^{-31}$ кг; Масса протона = 1840 масс электрона  $1a.e.m. = 1.66 \cdot 10^{-27}$ кг = 1/12 массы углерода

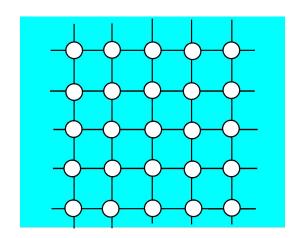



## Распределение электронов в атоме

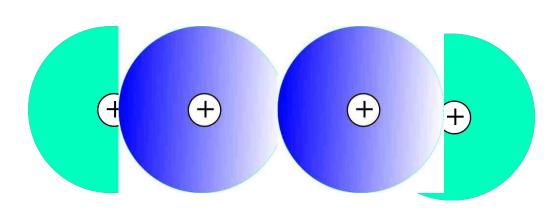
**Орбиталь** — пространство вокруг ядра, где наиболее вероятно расположение электрона



## Типы химических связей


### Ионная




### Ковалентная

$$\begin{array}{ccc} H & H & H \\ H & \overset{\cdot}{C} \cdot H \longrightarrow H \cdot \overset{\cdot}{C} \cdot H \Longrightarrow H - \overset{\cdot}{C} - H \\ H & \overset{\cdot}{H} & H \end{array}$$

## Металлическая

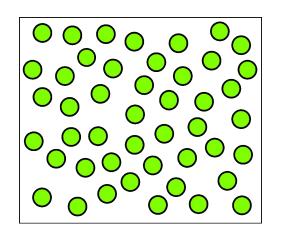


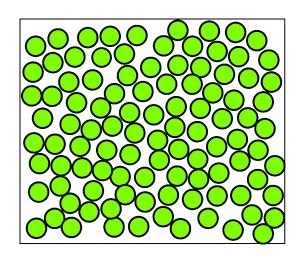
## Ван-дер-Вальсовская

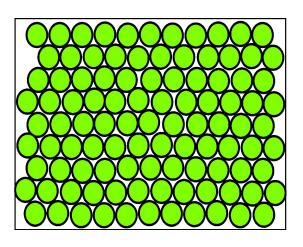


## Агрегатное состояние вещества

#### Газообразное –


Е<sub>кин</sub> >> Е<sub>пот</sub>; Молекулы изолированы и реагируют друг с другом только при соударении; Большая подвижность; Занимают весь предоставленный объем.


#### Жидкое -


Е<sub>кин</sub> < Е<sub>пот</sub>; Молекулы связаны Вандер-Вальсовыми связями; Подвижность молекул значительная; Сохраняется объем.

#### Твердое –

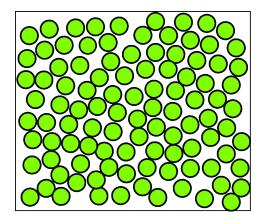
Е<sub>кин</sub> << Е<sub>пот</sub>; Молекулы связаны друг с другом; Подвижность крайне мала; Сохраняется объем и форма.







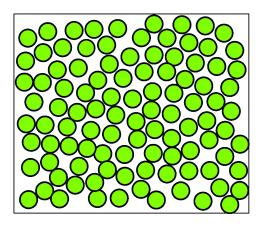
## Фазовое состояние вещества

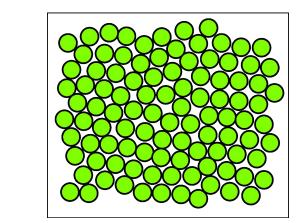

<u>Фаза</u> – структурно однородная часть системы, которая отделена от остальной части вещества четкими границами

|                | Однофазное      | Многофазное |
|----------------|-----------------|-------------|
| газообразн     | $O_2$ $O_2+N_2$ |             |
| жидка          | âîäà            | à î ä à     |
| кристаллическа | Na Cl           |             |

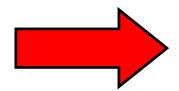
|                 | Жидкое           | Твердое              |
|-----------------|------------------|----------------------|
| Жидкая          | Жидкость         | Аморфные тела        |
| Кристаллическая | Жидкие кристаллы | Кристаллические тела |

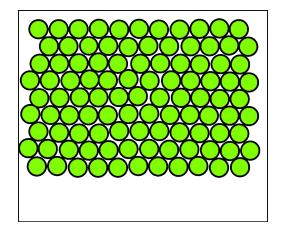
## Жидкость – Твердое тело


#### Затвердевание



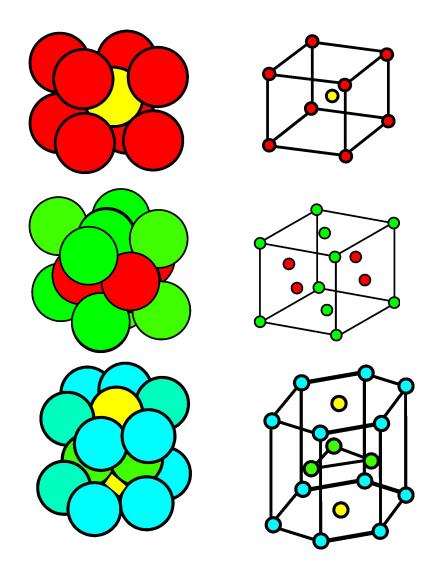

жидкость





#### Кристаллизация





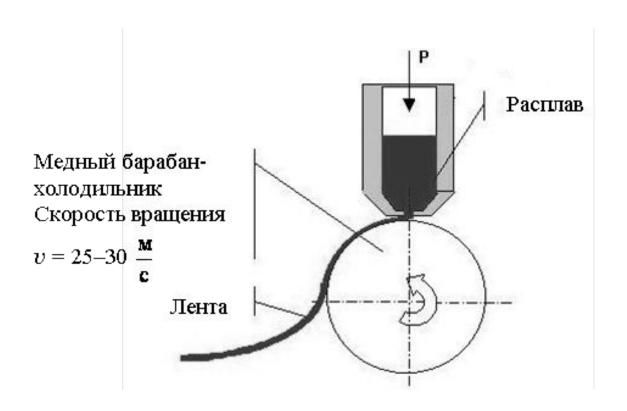

Твердое тело





кристаллическое тело

# Основные кристаллические структуры металлов




ОЦК – Объемноцентрированная кубическая

ГЦК – Гранецентрированная кубическая

ГПУ – Гексагональная плотноупакованная

## Получение аморфных лент:



Кристаллизация расплава происходит с очень высокой скоростью (порядка  $1000~^{\circ}\mathrm{C/muh})$ 

## Весовые и атомные проценты

**wt.** % - весовые проценты, показывают в каком отношении находятся массы элементов в сплаве. Ti-56wt.%Ni

**аt.** % - **атомные проценты**, показывают в каком отношении находится количество атомов одного элемента к количеству атомов другого.  $Ti_{50}Ni_{50} = Ti-50$ at.%Ni Мы обычно используем атомные проценты.

#### Рассмотрим TiNi:

Атомный вес Ті: 48 Атомный вес Ni: 61

Следовательно молекулярный вес TiNi: 48+61=109

## Перевод из атомных процентов в весовые: Ti-50at.%Ni.

Составляем пропорцию:

Молекулярный вес 109 -100%

Атомный вес Ті 48 – ?

?= 4800/109=44%

Значит в весовых процентах: TiNi:

<u>Ti-56wt.%Ni</u>

#### Перевод из весовых процентов в атомные: Ti-56wt.%Ni

Считаем сколько атомов Ті и Nі в сплаве:

Ti: 44/48=0,92; Ni: 56/61=0,92

Тут сразу видно, что на 1 атом Ті

приходится 1 атом Ni, значит в атомных %

Ti-50at.%Ni

Когда все не так очевидно, можно составить новую пропорцию:

Всего атомов: 0,92+0,92=1,84-100%

Атомов Ti: 0,92 - ?