# Относительнос ть движения

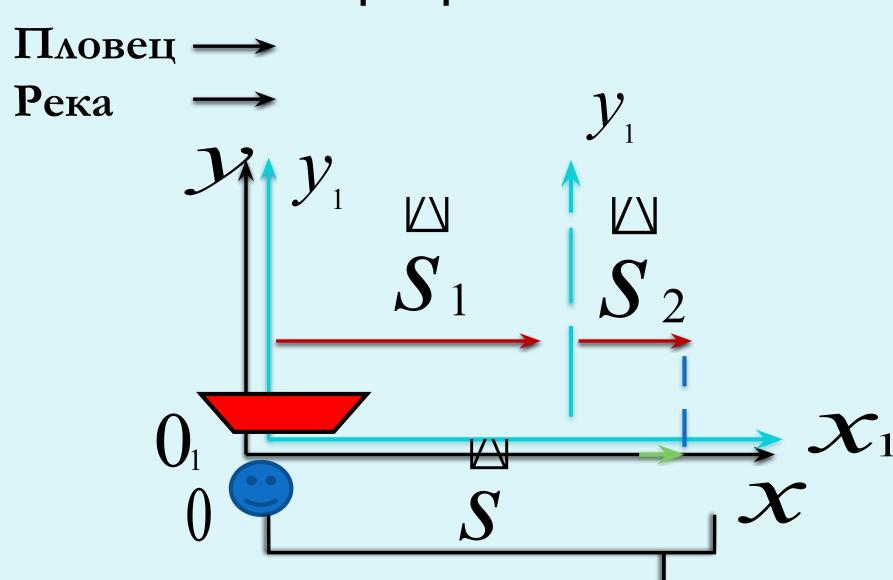
#### <u>O I II O O II I O O I D</u>

отсчета.

механического движения явление зависимости параметров движения (траектории, перемещения, скорости, ускорения) от выбранной системы

Найти скорость пловца относительно лодочной станции. Скорость пловца параллельно скорости течения реки.

#### Введем обозначения:


- **XO)** неподвижная система координат (берег, лодочная станция)
- •x'o'y'- подвижная система координат (лодка c

наблюдателем, без весел, движущаяся по течению реки

# Обозначения

- Тело пловец.
- тарительно повца относительно лодки (x'o'y')
- 2 скорость лодки относительно берега (  $\chi_O$ ) движение  $\chi'_O'y'$  относительно XOY).
- скорость пловца относительно берега (xoy)

# График



Через интервал t

- S перемещение пловца относительно o берега (xoy).
- $S_1$  перемещение пловца относительно лодки ( $\chi' o' y'$ )
- $S_2^-$  перемещение лодки (x'o'y') относительно берега (xoy)

график

# Классический закон сложения скоростей

$$S = S_1 + S_2$$

$$\frac{S}{S} = \frac{S_1}{t} + \frac{S_2}{t}$$

$$\frac{S}{t} = \frac{S_1}{t} + \frac{S_2}{t}$$

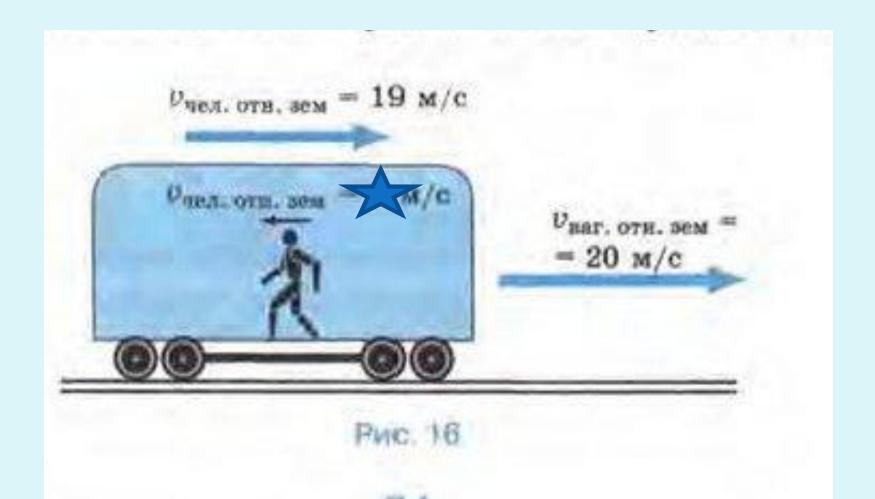
Закон сложения перемещений: перемещение тела относительно неподвижной системы отсчета равно векторной сумме перемещения тела относительно подвижной системы отсчета и перемещения подвижной системы относительно неподвижной.

$$S_{m HCO} = S_{m \Pi CO} + S_{\Pi CO HCO}$$

или 
$$\overset{ o}{s} = \overset{ o}{s}_1 + \overset{ o}{s}_2$$

# Классический закон сложения скоростей

$$\begin{array}{cccc}
 & \rightarrow & \rightarrow \\
 & \nu & + \nu_2
\end{array}$$


**Классический закон сложения скоростей**: скорость тела относительно неподвижной системы отсчета (абсолютная скорость) равна векторной сумме скорости тела относительно подвижной системы отсчета (относительная скорость) и скорости подвижной системы относительно неподвижной (переносная скорость).

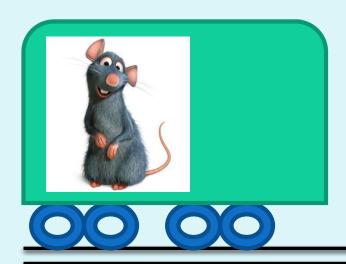
$$U_{m HCO} = U_{m \Pi CO} + U_{\Pi CO HCO}$$

ИЛИ

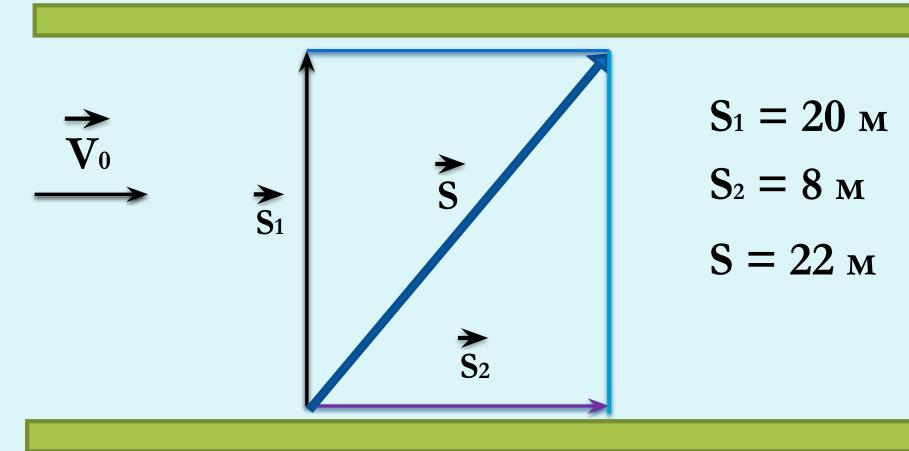
$$\vec{\upsilon} = \vec{\upsilon}_1 + \vec{\upsilon}_2$$

Определите с какой скоростью и в каком направлении движется человек относительно поверхности земли




Вертолет вертикально опускается на землю. Относительно вертолета точка А будет все время двигаться по окружности. Для наблюдателя та же самая точка будет двигаться по винтовой траектории.






Относительно чего мышь движется?

Относительно чего мы мышь остается в покое?



Пловец пересекает реку шириной 20 м.



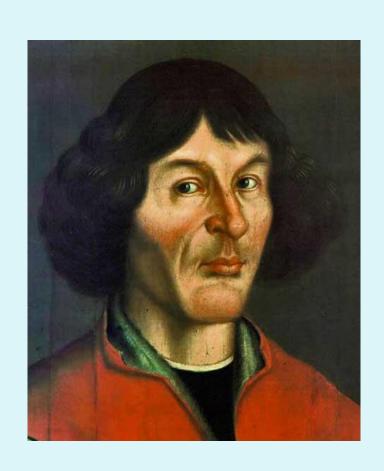
$$\hat{S} = \hat{S}_1 + \hat{S}_2$$

$$\mathbf{S} = \sqrt{\mathbf{S}_1^2 + \mathbf{S}_2^2}$$

#### Относительность движения

Таким образом, относительность движения проявляется в том, что скорость, траектория, путь и некоторые другие характеристики движения относительны, т.е. они могут быть различны в разных системах отсчета.

Понимание того, что движение одного и того же тела можно рассматривать в разных системах отсчета, сыграло огромную роль в развитии взглядов на строение Вселенной.

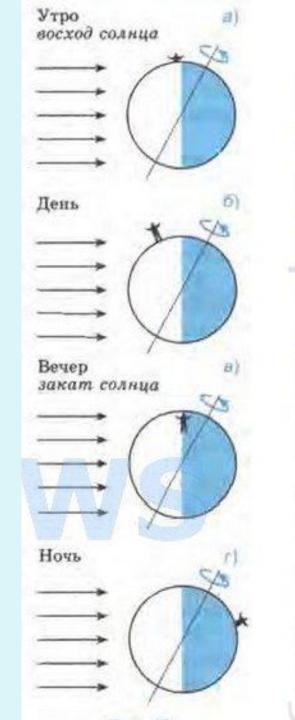

# <u>Клавдий Птолемей</u>



# <u>Геоцентрическая система мира</u>

- Клавдий Птолемей разработал
  геоцентрическую систему мира. Он поставил
  в центре мира неподвижную Землю, вокруг
  которой обращаются все небесные тела.
- Видимое петлеобразное движение планет Птолемей объяснил сочетанием двух равномерных круговых движений: движением самой планеты по малой окружности и обращением центра этой окружности вокруг Земли.

# Николай Коперник




# Гелиоцентрическая система мира

Николай Коперник разработал гелиоцентрическую систему мира. Он считал, что Земля и другие планеты движутся вокруг Солнца, одновременно вращаясь вокруг своих осей. В гелиоцентрической системе отсчета движение небесных тел рассматривается относительно Солнца.

### Смена дня и ночи

По системе Коперника видимое вращение Солнца и звезд, т.е. смена дня и ночи, объясняется вращением Земли вокруг своей оси. Время за которое земной шар делает полный оборот, называется сутками.



# Заключение

Таким образом, применение знаний об относительности движения позволило поновому взглянуть на строение Вселенной. Это помогло впоследствии открыть физические законы, описывающие движение тел в Солнечной системе и объясняющие причины такого движения.

#### Решение задач.

- Два поезда движутся на встречу друг другу со скоростями 72 км/ч и 54 км/ч соответственно. Пассажир, находящийся в первом поезде заметил, что второй поезд проходит мимо него в течении 14 с. Найти длину второго поезда.
  - Эскалатор метро поднимает неподвижно стоящего на нем пассажира в течении 1 минуты. По неподвижному эскалатору пассажир поднимается за 3 минуты. Сколько времени будет подниматься идущий вверх пассажир по движущемуся эскалатору.

# Решение задач.

3) Самолет движется относительно воздуха со скоростью 50 м/с. Скорость ветра относительно земли 15 м/с. Какова скорость самолета относительно земли, если он движется по ветру? Против ветра? Перпендикулярно направлению ветра?

#### Домашнее задание:

П. 9, упр. 9 (2-4)