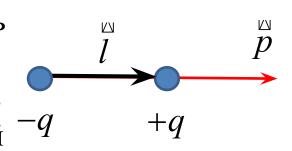
ЭЛЕКТРОСТАТИКА

Лекция 16.

Тема: Электрическое поле в веществе.

Учебник:


Трофимова Т.И. Курс физики : учеб. пособ. для вузов / Т. И. Трофимова. - М.: Академия, 2007.- с. 160-167.

к.ф.-м.н. Курочкин А.

Электрический диполь

Электрический диполь — электронейтральная система из двух точечных одинаковых по модулю и противоположных по знаку зарядов, находящихся друг от друга на расстоянии l, очень малом по сравнению с расстоянием r до точки наблюдения. $(l \ \square \ r)$

Электрический дипольный момент \bar{p}_e — ВФВ, характеризующая способность диполя создавать электрическое поле, равная произведению модуля одного из зарядов диполя q на вектор l, проведенный от центра отрицательного заряда к центру

положительного

$$\widehat{p_e} = |q|^{\frac{1}{l}}, \quad (1)$$

$$\left[\cancel{K}_{e} \right] \not= M \qquad \cdot \quad .$$

где l — плечо диполя.

Поляризация диэлектриков в электрическом поле

Диэлектрик – вещество,

- не способное проводить электрический ток;
- в котором <u>нет свободных</u> носителей электрического заряда. Все заряды в таких диэлектриках <u>связанные</u>: принадлежат отдельным атомам и молекулам.
- 1) Связанные заряды заряды, совершающие микроскопические движения в веществе и не способные перемещаться на значительные расстояния.

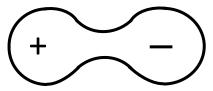
Примеры связанных зарядов: заряженные микрочастицы, входящие в состав атомов, молекул, ионов.

2) Свободные заряды — заряды, способные перемещаться в веществе на значительные расстояния.

Поляризация диэлектриков

Поляризация — смещение <u>связанных зарядов</u> из свих положений равновесия порядка атомных при внесении диэлектрика во внешнее электрическое поле.

В соответствии с механизмом поляризации диэлектрики делятся на III класса:


Диэлектрики	Механизм поляризации
Неполярные	Электронный
Полярные	Ориентационный
Ионные кристаллы	Ионный

Полярные и неполярные молекулы

1. В неполярных молекулах <u>в отсутствие</u> внешнего электрического поля центры положительного и отрицательного зарядов совпадают; молекула электронейтральна и не имеет дипольного момента.

2. Полярные молекулы <u>в отсутствие</u> внешнего электрического поля являются диполями, поскольку центры положительного и отрицательного зарядов у них смещены.

I. Неполярные диэлектрики

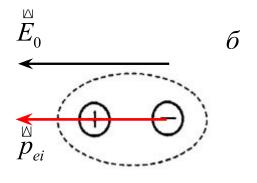
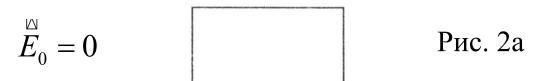
Примеры неполярных молекул: N_2 , H_2 , O_2 , CO_2 , CH_4 .

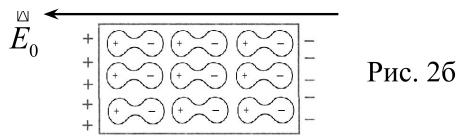
Электронный (деформационный) механизм поляризации диэлектрика, состоящий из неполярных молекул.

В <u>отсумствии</u> внешнего поля E_0 сторонних зарядов <u>электронное облако молекулы</u> сферически симметрично и центр отрицательного заряда совпадает с положительно заряженным ядром.

 $\begin{array}{c} \mathcal{A} \\ \bigoplus \\ \sum_{i}^{\bowtie} p_{ei} = 0, \end{array}$

При <u>включении</u> внешнего поля E_0 электронное облако деформируется (центр отрицательного заряда перестает совпадать с ядром), и образуется диполь.


Рис. 1

Механизм поляризации неполярных диэлектриков

1. При $E_0^{\bowtie} = 0$ диполей нет, поляризация отсутствует (рис. 2, a).

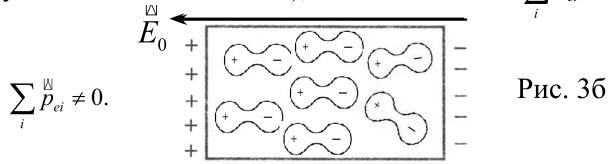
2. При наличии внешнего поля \bar{E}_0 положительные и отрицательные заряды в пределах каждой молекулы смещаются, молекулы превращаются в диполи, диэлектрик становится поляризованным (рис. $2, \delta$).

Поляризация диэлектрика — явление превращения электрически нейтральной системы **связанных зарядов** вещества в систему ориентированных по полю диполей.

II. Полярные диэлектрики

Примеры полярных молекул: H_2O , NH_3 , SO_2 , CO.

Механизм поляризации полярных диэлектриков.

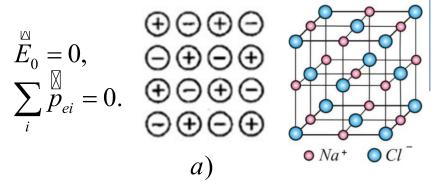

1. Полярные молекулы являются диполями $(p \neq 0)$, однако в отсутствие внешнего электрического поля из-за хаотической ориентации молекул суммарный дипольный момент всего вещества равен нулю (рис. 3a).

$$E_0 = 0,$$

$$\sum_{i} p_{ei} = 0.$$

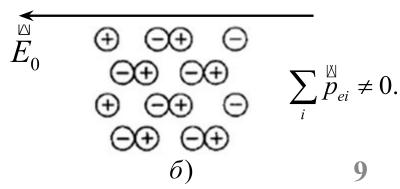
Рис. За

2. Во внешнем поле **полярные** молекулы ориентируются так, что их дипольные моменты стремятся выстроиться по полю (этому препятствует тепловое движение), вследствие чего $\sum_{p_{ei}}^{\bowtie} \neq 0$ (рис. 3δ).



Ш. Ионный механизм поляризации

Примеры ионных кристаллов: NaCl – поваренная соль, KCL, KBr.


Ионные кристаллы — кристаллы **Включение** состоящие из чередующихся ионов приводит к отн противоположного знака. подрешеток,

Если стороннее поле отсутствует, то на каждой поверхности кристалла имеется одинаковое количество положительных (ионов натрия Na^+) и отрицательных (ионов хлора Cl^-) зарядов, из-за чего вещество в целом неполяризовано.

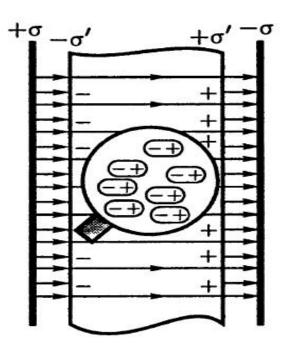
Включение стороннего поля приводит к относительному сдвигу подрешеток, образованных положительно и отрицательно заряженными ионами (подрешетка положительно заряженных ионов смещается полюю).

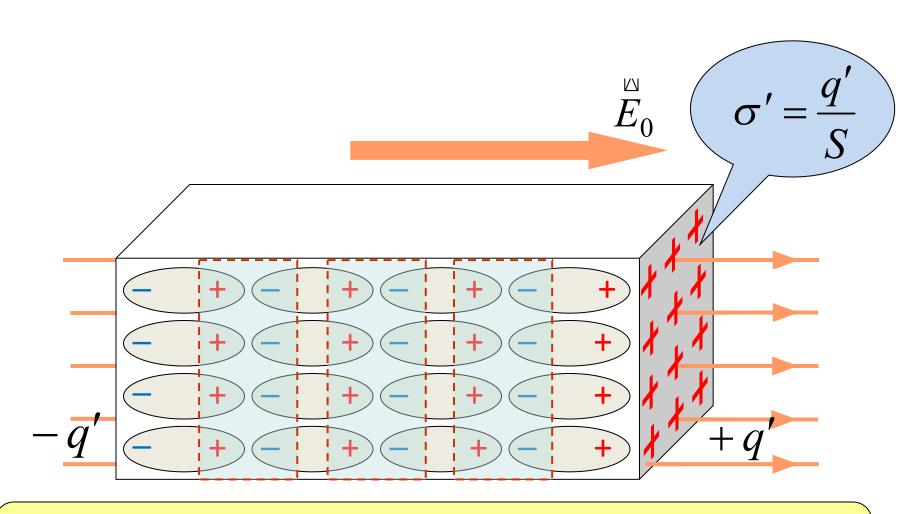
В результате на одной из граней (левой) сосредоточивается нескомпенсированный положительный заряд, а на противоположный – отрицательный.

- 1. Электронная смещение электронных оболочек атомов под действием внешнего электрического поля. Самая быстрая поляризация (до 10⁻¹⁵с). Потери энергии отсутствуют.
- 2. Ионная смещение узлов кристаллической структуры под действием внешнего электрического поля, причем смещение на величину, меньшую, чем величина постоянной решетки. Время протекания 10⁻¹³с, без потерь.
- 3. Дипольная (ориентационная) связана с ориентацией диполей во внешнем электрическом поле. Протекает с потерями энергии на преодоление сил связи и внутреннего трения.

Поляризованность

Количественной мерой степени **поляризации** диэлектрика во внешнем поле является **поляризованность** P.


Поляризованность \vec{P} – векторная величина, определяемая как дипольный момент единицы объема диэлектрика:


$$P = \frac{\sum_{i=1}^{n} p_{ei}}{M} \quad \left[\frac{K\pi}{2}\right] \quad (2)$$

где p_{ei}^{\bowtie} – дипольный момент i-й молекулы.

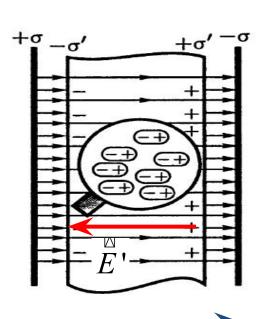
Поле внутри диэлектрика

- Внесем в однородное внешнее электрическое поле \vec{E}_0 (создается двумя бесконечными параллельными разноименно заряженными плоскостями) пластинку из однородного диэлектрика.
- Под действием поля диэлектрик поляризуется, т.е. происходит смещение зарядов; положительные смещаются по полю, + отрицательные против поля.
- В результате этого на правой грани диэлектрика, обращенного к отрицательной плоскости, будет **избыток положительного** заряда с поверхностной плотностью $+\sigma'$, на левой **отрицательного** заряда с поверхностной плотностью $-\sigma'$.
- Эти нескомпенсированные заряды, появляющиеся в результате поляризации диэлектрика, называются связанными.

Во внешнем поле молекулы диэлектрика поляризуются. На торцевых поверхностях появляются связанные заряды. Появление связанных зарядов приводит к возникновению дополнительного электрического поля E'

(поля, создаваемого связанными зарядами), которое направлено **против** внешнего поля E_0

(поля, создаваемого свободными зарядами) и ослабляет его.


Результирующее поле внутри диэлектрика

Мы уже знаем, что **поле** (**напряжённость**) в вакууме, созданное между двумя бесконечными заряженными плоскостями, равно

поэтому

равно
$$E' = \frac{\sigma'}{\varepsilon_0},$$

$$E = E_0 - \frac{\sigma'}{\varepsilon_0}. \quad (4)$$

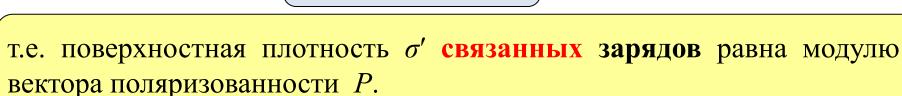
Поверхностная плотность связанных зарядов σ'

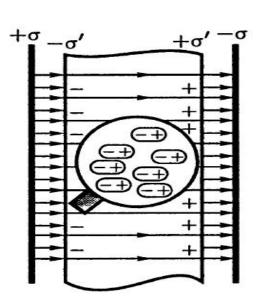
Суммарный дипольный момент пластинки диэлектрика

$$\sum_{i} p_{ei} = PV = PSd, \quad (5)$$

где S – площадь грани пластинки, d – её толщина.

С другой стороны, суммарный дипольный момент, равен


$$\sum_{i} p_{ei} = q'd = \sigma'Sd. \quad (6)$$


Поэтому, приравняв (5) и (6), получим

$$PSd = \sigma'Sd$$

или

$$\sigma' = P$$
, (7)

Для большого числа диэлектриков (за исключением *сегнетоэлектриков* и некоторых *ионных кристаллов*)

поляризованность $\stackrel{\bowtie}{P}$ линейно зависит от напряжённости поля E. Если диэлектрик изотропный и E не слишком велико, то

$$P = \chi \varepsilon_0 E \quad (3)$$

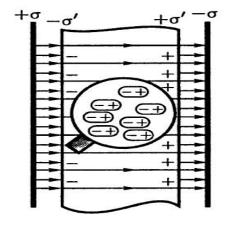
где χ — диэлектрическая восприимчивость вещества, характеризующая свойства диэлектрика.

Важные нюансы

- 1. χ величина **безразмерная**;
- 2. Всегда $\chi > 0$ и для большинства диэлектриков (твёрдых и жидких) составляет несколько единиц.

Получаем

$$E = E_0 - E' = E_0 - \frac{\sigma}{\varepsilon_0} = E_0 - \frac{P}{\varepsilon_0} = E_0 - \frac{\varepsilon_0 \chi E}{\varepsilon_0} = E_0 - \chi E,$$


откуда напряженность результирующего поля внутри диэлектрика

равна

$$\left(E = \frac{E_0}{1+\chi} = \frac{E_0}{\varepsilon}. \quad (7)\right)$$

Безразмерная величина

$$\varepsilon = 1 + \chi$$
 (8)

называется диэлектрической проницаемостью среды.

є показывает, во сколько раз поле **ослабляется** диэлектриком, и характеризует количественно свойство диэлектрика **поляризоваться** в электрическом поле.

Вектор электрического смещения $\stackrel{\scriptscriptstyle \bowtie}{D}$

Вектор напряжённости, переходя через границу диэлектриков, претерпевает скачкообразное изменение, создавая тем самым неудобства при расчётах электростатических полей. Поэтому удобно ввести величину, учитывающую свойства среды, на которую действует внешнее электростатическое поле.

Вектор электрического смещения \ddot{D} — ВФВ, являющаяся вспомогательной характеристикой электрического поля, определяемая соотношением

$$\left(D = \varepsilon_0 E + P \cdot \left[\frac{Kn}{M^2} \right] \right)$$

Вектор электрического смещения можно выразить следующим образом:

$$\overset{\bowtie}{D} = \varepsilon_0 \overset{\bowtie}{E} + \overset{\bowtie}{P} = \varepsilon_0 \overset{\bowtie}{E} + \chi \varepsilon_0 \overset{\bowtie}{E} = \left(1 + \chi\right) \varepsilon_0 \overset{\bowtie}{E} = \varepsilon \varepsilon_0 \overset{\bowtie}{E}.$$

$$D = \varepsilon \varepsilon_0 E$$
.

Возвращаясь к напряженности результирующего поля внутри

диэлектрика равна

Умножим на $\mathcal{E}\mathcal{E}_0$

$$E=rac{E_0}{1+\chi}=rac{E_0}{arepsilon}\Big|\cdot arepsilon arepsilon_0$$
 $arepsilon_D E=arepsilon_D E=arepsilon_D E=arepsilon_0$ или $arD=D_0$ или $arD=D_0$

ВАЖНО! Электрическое смещение внутри пластины \bar{D} совпадает с электрическим смещением внешнего поля $D_{\scriptscriptstyle 0}$ при условии, что однородный и изотропный диэлектрик заполняет объём, ограниченный эквипотенциальными поверхностями.

$$E = \frac{E_0}{\varepsilon} = \left[E_0 = \frac{\sigma}{\varepsilon_0} \right] = \frac{\sigma}{\varepsilon_0 \varepsilon}$$

 $E = \frac{E_0}{\varepsilon} = \begin{bmatrix} E_0 = \frac{\sigma}{\varepsilon_0} \end{bmatrix} = \frac{\sigma}{\varepsilon_0 \varepsilon}$ т.е. поверхностная плотность σ свободных зарядов равна модулю вектора электрического смещения D.

$$E = \sigma$$

$$D = \sigma$$

ВЫВОД

Если однородный и изотропный диэлектрик полностью заполняет объём, ограниченный эквипотенциальными поверхностями поля сторонних зарядов, то вектор электрического смещения совпадает с вектором напряжённости поля сторонних зарядов, умноженным на , ε_0

$$\stackrel{\bowtie}{D} = \varepsilon_0 \stackrel{\bowtie}{E_0}.$$

и, следовательно, напряжённость поля внутри диэлектрика в ε раз меньше, чем напряжённость поля сторонних зарядов.

$$E = \frac{E_0}{\varepsilon}$$

ФИЗИЧЕСКИЙ СМЫСЛ ВЕКТОРА ЭЛЕКТРИЧЕСКОГО СМЕЩЕНИЯ

Вектор $\overset{\bowtie}{D}$ характеризует электростатическое поле, создаваемое свободными зарядами (т.е. в вакууме), но при таком их распределении в пространстве, какое имеется при наличии диэлектрика.

ВАЖНЫЕ НЮАНСЫ

- 1. Поле $\overset{\bowtie}{D}$, как и поле $\overset{\bowtie}{E}$, изображается с помощью линий электрического смещения, направление и густота которых определяются точно так же, как и для линий напряженности.
- 2. Линии вектора E могут начинаться и заканчиваться на любых зарядах свободных и связанных, в то время как линии вектора D только на свободных зарядах.

Теорема Гаусса для электростатического поля в диэлектрике

Поток вектора <u>электрического смещения</u> электростатического поля в диэлектрике сквозь произвольную замкнутую поверхность равен алгебраической сумме заключенных внутри этой поверхности <u>сторонних</u> электрических зарядов.

$$\int\limits_{S}^{\mathbb{N}} DdS = \sum_{i=1}^{n} q_{imop}$$

$$\underbrace{\mathbb{E}_{S}^{\mathbb{N}} EdS}_{S} = \underbrace{\frac{\sum_{i=1}^{N} q_{icex}}{\varepsilon_{0}}}_{i=1} = \underbrace{\frac{\sum_{i=1}^{n} q_{cmop}}{\varepsilon_{0}}}_{i=1} + \underbrace{\frac{\sum_{i=1}^{k} q_{cens}}{\varepsilon_{0}}}_{i=1}$$

Эта формула неприемлема для описания поля в диэлектрике, так как она выражает свойства неизвестного поля через связанные заряды, которые, в свою очередь, определяются им же.

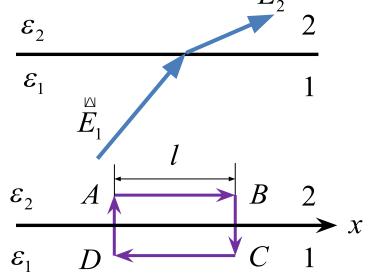
Условия на границе раздела

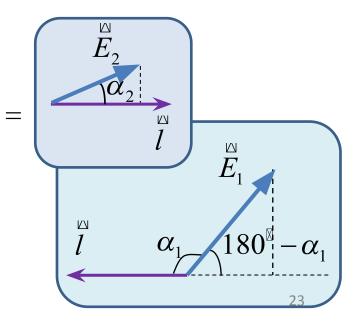
двух диэлектрических сред

Пусть в диэлектриках создано поле, напряженность которого выпервом диэлектрике равна E_1 , а во втором - E_2 .

При отсутствии на границе свободных зарядов.

Построим вблизи границы раздела диэлектриков 1 и 2 замкнутый прямоугольный контур **ABCDA** длиной *l*. **BC** и **DA** ничтожно малы.


Согласно теореме о циркуляции вектора $\stackrel{ ightharpoondown}{E}$


$$\int_{AB} \stackrel{\bowtie}{E}_{2} dl = 0$$

$$\int_{AB} \stackrel{\bowtie}{E}_{2} dl + \int_{CD} \stackrel{\bowtie}{E}_{2} dl = \int_{AB} \underbrace{E}_{E_{2l}} \cos \alpha_{2} dl + \int_{CD} \underbrace{E}_{E_{1l}} \cos \alpha_{1} dl = 0$$

$$= \int_{AB} \underbrace{E}_{2l} dl - \int_{CD} \underbrace{E}_{1l} dl = \underbrace{E}_{2l} l - \underbrace{E}_{1l} l = 0$$

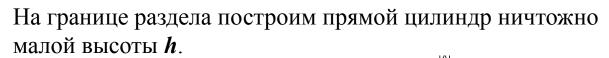
$$\underbrace{E}_{2l} l - \underbrace{E}_{1l} l = 0$$

Представим каждый из векторов \vec{E}_1 и \vec{E}_2 в виде суммы нормальной и тангенциальной составляющих:

$$E_{1}^{\square} = E_{1n}^{\square} + E_{1\tau}^{\square}$$

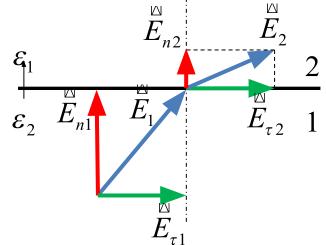
$$E_{2} = E_{2n} + E_{2\tau}$$

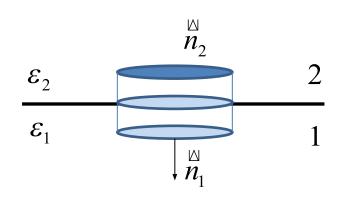
Тогда


$$\mathbf{1.} \ \left[E_{1\tau} = E_{2\tau} \right]$$

$$D_{1\tau} = \varepsilon_1 \varepsilon_0 E_{1\tau}$$

$$D_{2\tau} = \varepsilon_2 \varepsilon_0 E_{2\tau}$$


$$\frac{D_{1\tau}}{\varepsilon_1 \varepsilon_0} = \frac{D_{2\tau}}{\varepsilon_2 \varepsilon_0}$$


2.
$$\frac{D_{1\tau}}{D_{2\tau}} = \frac{\varepsilon_1}{\varepsilon_2}$$

Согласно теореме Гаусса для вектора D

$$\oint\limits_{S} \overset{\mathbb{N}}{D} dS = \sum_{i=1}^{n} q_{imop}$$

$$\oint_{S} DdS = \sum_{m=0}^{n} q_{imop}$$

$$D_{n} S + D_{n} S + D_{n} S = 0$$

$$D_{n} = -D_{n} 0$$

Если проецировать D_1 и D_2 на одну и туже нормаль, получится условие

$$D_{n1} = D_{n2}$$

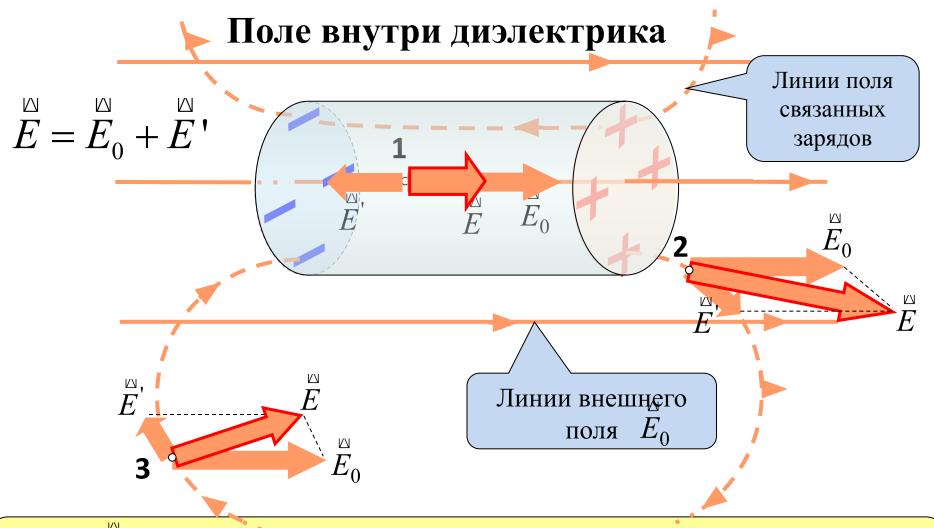
$$D_{1n} = \varepsilon_1 \varepsilon_0 E_{1n}$$

$$D_{2n} = \varepsilon_2 \varepsilon_0 E_{2n}$$

$$D_{2n} = \varepsilon_2 \varepsilon_0 E_{2n}$$

$$\varepsilon_1 \varepsilon_0 E_{1n} = \varepsilon_2 \varepsilon_0 E_{2n}$$

$$2. \left(\frac{E_{1n}}{E_{2n}} = \frac{\varepsilon_2}{\varepsilon_1} \right)$$


вывод:

При переходе через границу раздела двух диэлектриков нормальная составляющая электрического вектора тангенциальная составляющая смещения И вектора напряжённости электрического поля изменяются непрерывно.

$$E_{1\tau} = E_{2\tau}, \quad D_{n1} = D_{n2}$$

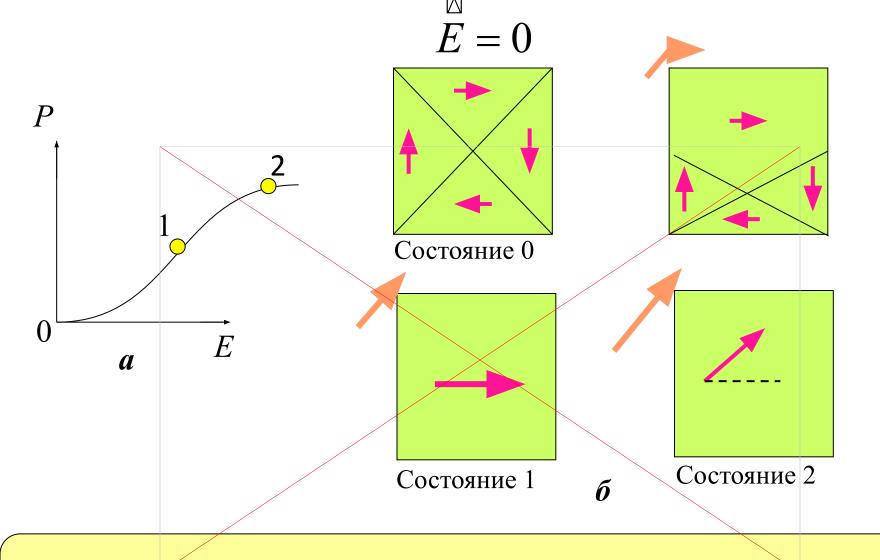
Тангенциальная составляющая вектора электрического смещения и нормальная составляющая вектора напряжённости электрического поля претерпевают скачок.

$$\overline{\frac{D_{1\tau}}{D_{2\tau}}} = \frac{\varepsilon_1}{\varepsilon_2}, \quad \frac{E_{1n}}{E_{2n}} = \frac{\varepsilon_2}{\varepsilon_1}$$

Поле E_0 создается **связанными зарядами** диэлектрика. Оно ослабляет поле E_0 внутри диэлектрика (точка 1). За пределами диэлектрика суммарное поле увеличивается (точка 2) или уменьшается (точка 3).

Сегнетоэлектрики

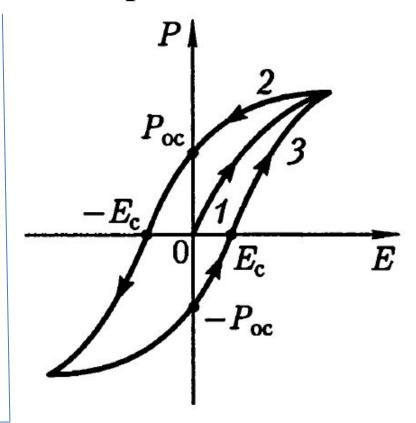
Формулировка. Сегнетоэлектрики - диэлектрики, обладающие в определенном интервале температур спонтанной (самопроизвольной) поляризованностью, т.е. поляризованностью в отсутствие внешнего электрического поля. К таким материалам относится сегнетова соль $NaKC_4H_4O_6\cdot 4H_2O$ и титанат бария $BaTiO_3$.


Обычно **сегнетоэлектрик** не является однородно **поляризованным**, а представляет собой совокупность доменов — малых областей, **поляризованных** практически до точки насыщения. **Векторы поляризации** соседних доменов ориентированы в разные стороны, так что в целом макроскопический объем вещества оказывается

неполяризованным.

$$P_{\text{домена}} \neq 0,$$
 $P_{\text{сегнетоэл}} = 0$

Во внешнем электрическом поле происходит рост тех доменов, векторы поляризации которых ориентированы по полю, вследствие чего растёт поляризация вещества.


По мере увеличения стороннего поля весь сегнетоэлектрик превращается в один домен, вектор поляризации которого ориентирован по полю. При этом поляризация вещества достигает насыщения. Этот рост незначителен, вследствие чего диэлектрическая проницаемость сегнетоэлектроников в больших полях снижается и стремится к значениям, типичным для твердых диэлектриков с деформационным механизмом поляризации.

Основная **кривая поляризации** (a) и схема состояния доменов *при увеличении* **внешнего поля** (δ).

Диэлектрический гистерезис

увеличением напряжённости электрического поля поляризованность Р растёт, достигая насыщения (кривая 1). Уменьшение Р с уменьшением E происходит по кривой 2, и при E=0 сегнетоэлектрик сохраняет остаточную поляризованность P_{oc} , T.e. остаётся сегнетоэлектрик поляризованным в отсутствие внешнего электрического поля.

Для уничтожения остаточной поляризованности необходимо приложит электрическое поле обратного направления (- $E_{\rm c}$). Величина $E_{\rm c}$ называется коэрцитивной силой. Если далее изменять E, то P изменяется по кривой 3 петли гистерезиса.