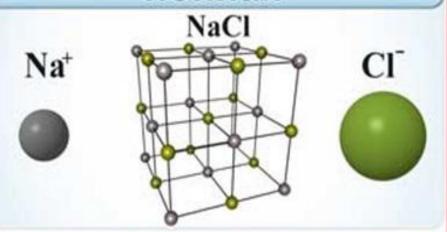
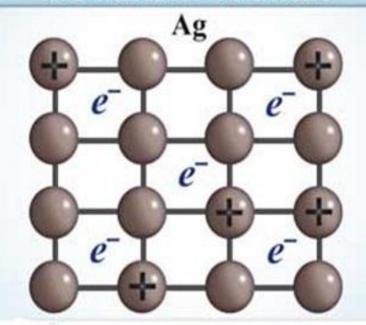
# Строение вещества

# Химическая связь взаимодействие атомов, связывающее их в единую устойчивую систему (молекулу, ион, кристалл и др.)

#### химическая связь


#### ковалентная

#### полярная H→Cl δ+ . . δ-H:Cl:


неполярная Cl-Cl

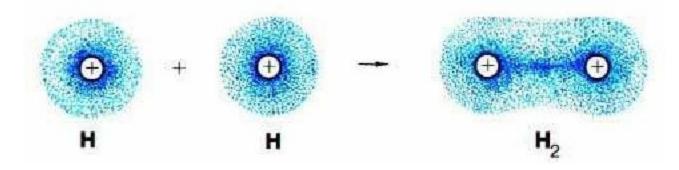


#### ионная



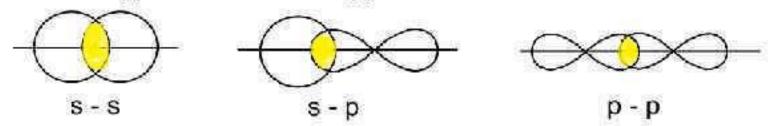
#### металлическая



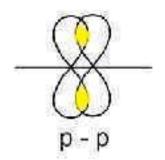

#### водородная



### Ковалентная связь


Ковалентная связь — это связь между атомами неметаллов за счет образования общих связывающих электронных пар.

При образовании ковалентной связи происходит перекрывание атомных орбиталей




#### Способы перекрывания электронных облаков:

<u>о - связь</u> возникает при перекрывании электронных облаков вдоль линии соединения атомов:



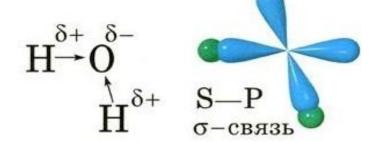
<u>т-связь</u> возникает при перекрывании электронных облаков по обе стороны от линии соединения атомов:



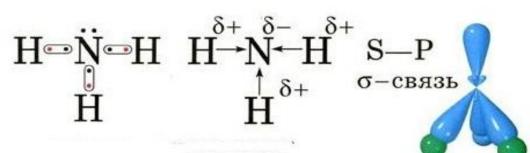
#### Характеристики ковалентной связи:

- Энергия связи энергия, которую необходимо затратить для разрыва данной связи. Измеряется в кДж/моль. Зависит от радиуса перекрывающихся облаков.
- **Кратность связи** число химических связей между двумя атомами. Её можно показать сплошной линией между атомами либо точками. Чем больше кратность связи, тем прочнее связь.
- **Длина связи** расстояние между ядрами атомов в молекуле. Измеряется в нм.
- **Полярность связи** смещение общей электронной плотности к более электроотрицательному атому. В зависимости от этого ковалентная связь делится на полярную и неполярную

- 1) Ковалентно-неполярная связь связь между атомами одного неметалла, общая электронная пара находится посередине
   ▶ Н₂, Р₄, О₂, S₂
- 2) Ковалентно-полярная связь связь между атомами разных неметаллов, общая электронная пара смещается к более электроотрицательному элементу
- ▶ H<sub>2</sub>O, HCl, N<sub>2</sub>O, NO<sub>2</sub>


#### Ковалентная неполярная связь

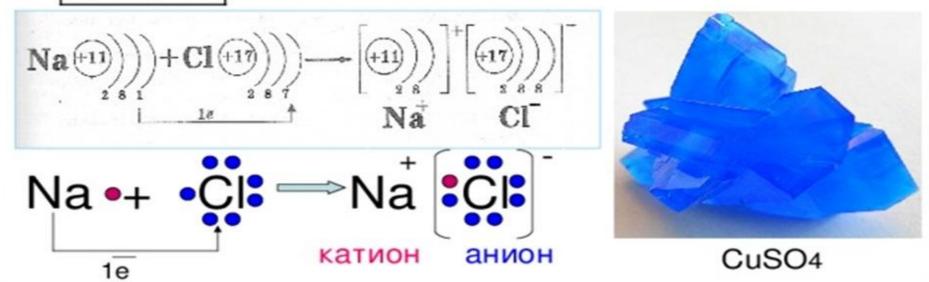
#### КОВАЛЕНТНАЯ ПОЛЯРНАЯ СВЯЗЬ


$$egin{array}{ccc} \mathbf{HCl} & \mathrm{Cl} & \mathrm{fl} & \mathrm$$

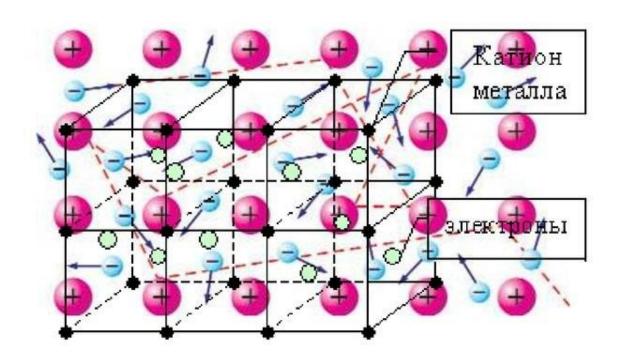
H
$$\stackrel{\ddot{\text{Cl}}}{\stackrel{\text{Cl}}{\longrightarrow}}$$
  $\overset{\delta^+}{\text{Cl}}$   $\overset{\delta^-}{\stackrel{\text{S-P}}{\longrightarrow}}$ 

$$\mathbf{H_{2}O}$$
 of  $\frac{\mathsf{TI} \, \mathsf{TI} \, \mathsf{TI}}{2\mathsf{p}^{4}}$ 



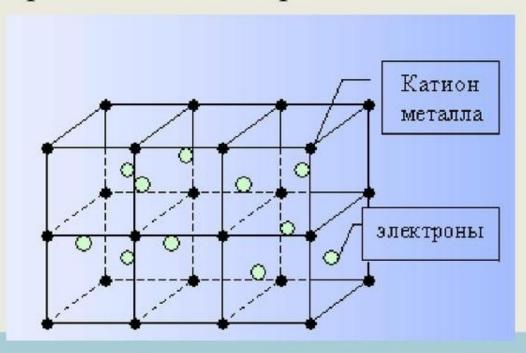

$$\mathbf{NH_3}$$
  $\stackrel{\mathrm{N} \dagger \dagger}{}_{2\mathbf{s}^2} \stackrel{\dagger \dagger \dagger \dagger}{}_{2\mathbf{p}^3}$ 

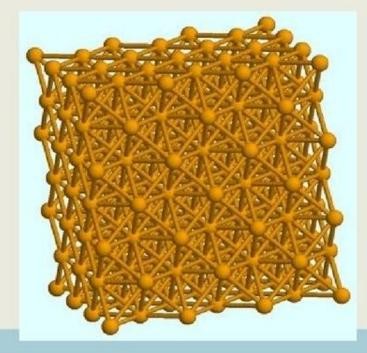



#### **ИОННАЯ СВЯЗЬ**

Ионная связь— это связь, образующаяся за счет электростатического притяжения катионов к анионам элементов, значительно отличающихся по электроотрицательности - s-металлы I и II групп Периодической системы и неметаллы VI и VII групп (фторид лития, хлорид цезия, оксид калия и др.).

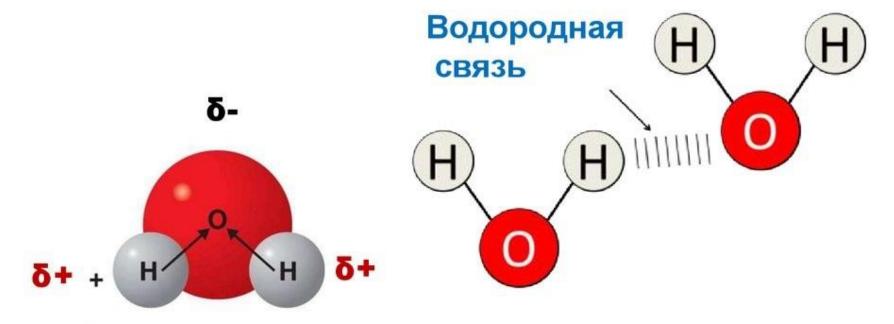
Металл<sup>0</sup>+неметалл<sup>0</sup>= Металл<sup>n+</sup>неметалл<sup>n-</sup> электроны





Металлическая связь - химическая связь в металлах и их сплавах. Данным видом химической связи определяются свойства веществ - твёрдость, ковкость, электрическая проводимость, теплопроводность, пластичность, металлический блеск и т.д.



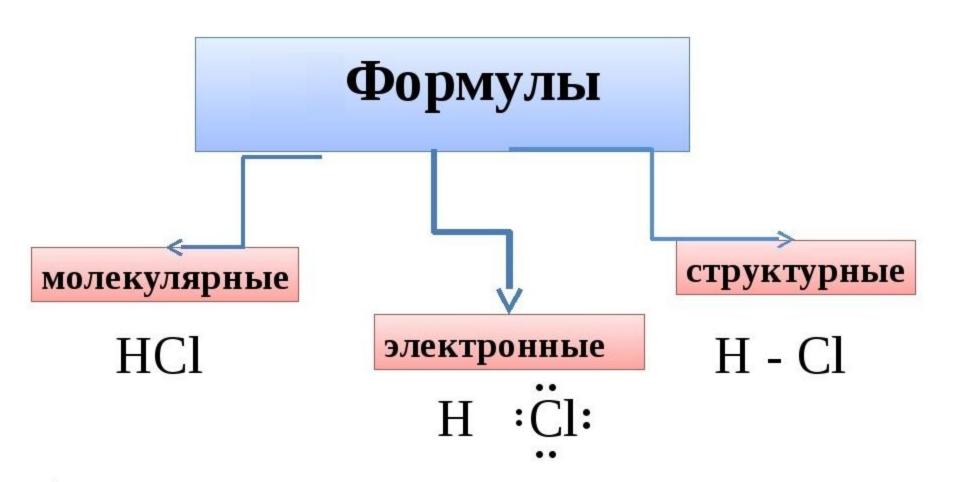
### Металлическая связь


Эта химическая связь обусловлена взаимодействием электронного газа (валентных электронов) в металлах с остовом (скелетом) из положительно заряженных ионов кристаллической решетки





# Водородная связь


Это связь между положительно заряженным атомом водорода одной молекулы и отрицательно заряженным атомом другой молекулы



Межмолекулярная водородная связь — возникает между разными молекулами.

Внутримолекулярная водородная связь — возникает внутри одной молекулы.

Наличие водородной связи обуславливает физические и химические свойства вещества - высокие температуры плавления и кипения, хорошую растворимость, высокую испаряемость. Связь слабая и легко рвётся, но множество таких связей способно породить силу, на которой, в буквальном смысле, держится всё живое. Соединения с водородной связью - спирты, карбоновые кислоты, амины, аминокислоты, белки, вода, аммиак, фтороводород



## Структурная формула -

это графическое изображение химического строения молекулы вещества, в котором показывается порядок связи атомов, их геометрическое расположение. Кроме того, она наглядно показывает ва лентность атомов, входящих в ее состав

#### Алгоритм составления структурной формулы по молекулярной формуле вещества

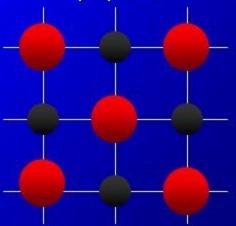
#### IV II

CO<sub>2</sub>

0=C=0

#### I VI II

H2SO4


число линий - означает валентность данного элемента

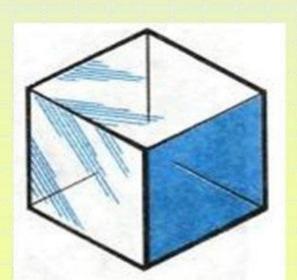
# Твердые вещества

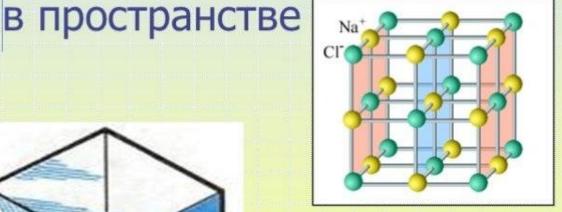


#### <u>Кристаллические</u>

(греч. **krystallos** – лед, горный хрусталь) – твердые тела правильной симметричной многогранной формы

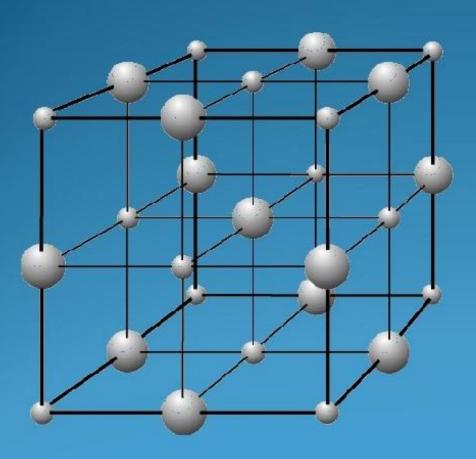






#### Аморфные

(греч. **a** – частица отрицания, **morphe** – вид, форма) – вещества, не имеющие кристаллической структуры




Кристаллы - это твёрдые тела, атомы или молекулы которых занимают определённые, упорядоченные положения







# Кристаллическая решётка -



это совокупность точек пространства, в которых располагаются частицы, образуя кристалл

### Типы кристаллических решеток

| хар актеристики                                     | Тип решетки                                                     |                                                                 |                                                                                      |                                                                                   |
|-----------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
|                                                     | ат омная                                                        | ионная                                                          | молекулярная                                                                         | металлическая                                                                     |
| Вид частиц в<br>узлах<br>решетки                    | Атомы                                                           | Ионы<br>катионы<br>анионы                                       | Молекулы                                                                             | Атомы или<br>катионы<br>металлов                                                  |
| Хар актер<br>химической<br>связи между<br>частицами | Ковалентная                                                     | Ионная                                                          | Силы<br>межмолекулярного<br>взаимодействия                                           | Металлическая<br>связь                                                            |
| Прочность связи                                     | Очень прочная                                                   | Прочная                                                         | Слабая                                                                               | Разной прочности                                                                  |
| Отличительные<br>свойства<br>веществ                | Твердые<br>тугоплавкие,<br>нелетучие,<br>нерастворимы<br>в воде | Твердые, туго -плавкие, нелетучие, раствори -мы в воде (многие) | Хрупкие,<br>легкоплавкие, при<br>обычных<br>условиях часто –<br>жидкости или<br>газы | Металлический блеск, хорошие электро- и теплопроводн ость, ковкость, пластичность |
| Примеры<br>веществ                                  | Кремний, алмаз                                                  | Поваренная соль, основания, хлорид кальция                      | Йод, лед, «сухой лед»                                                                | Медь, железо,<br>золото                                                           |