МАГИСТЕРСКАЯ ДИССЕРТАЦИЯ

Тема: «Исследование

неравномерности наполнения

цилиндров двигателя свежим

зарядом»

Магистрант группы: 8ЭМ-62 Я.О. Шуст

Научный руководитель: доцент, к. т. н. Г.В. Пыжанкин

Объектом исследования является система газообмена шестицилиндрового дизеля.

Цель работы — исследование неравномерности наполнения 6-цилиндрового двигателя с последующим улучшением газообмена.

Научная новизна работы заключается в следующем:

- Исследована неравномерность воздухоснабжения по цилиндрам дизеля 6ЧН 15/18;
- Исследована неравномерность воздухоснабжения по цилиндрам на стендах статической и динамической продувки;
- Проведен анализ влияния на неравномерность воздухоснабжения конструктивных особенностей системы газообмена;
- Проведен анализ влияния неравномерности воздухоснабжения на показатели двигателя с использованием программы ДИЗЕЛЬ-РК.

Задачи:

- 1. Проанализировать основные факторы, влияющие на наполнение цилиндров свежим зарядом, а также проанализировать экспериментальные методы.
- 2. Привести исследования неравномерности воздухоснабжения на экспериментальных установках.

Анализ основных факторов, влияющих на наполнение

двигателя свежим зарядом.

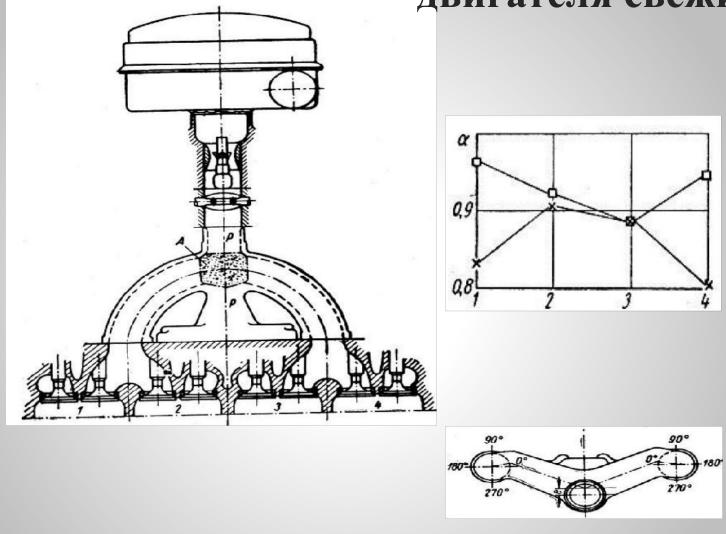


Рисунок 1.1 – Конструктивная схема впускного тракта двигателя " Боргвард " и распределение горючей смеси по цилиндрам А – зона разделения впускного тракта на отдельные ветви; Р-Р – разделительная плоскость зоны разделения; 1-4 – цилиндры двигателя.

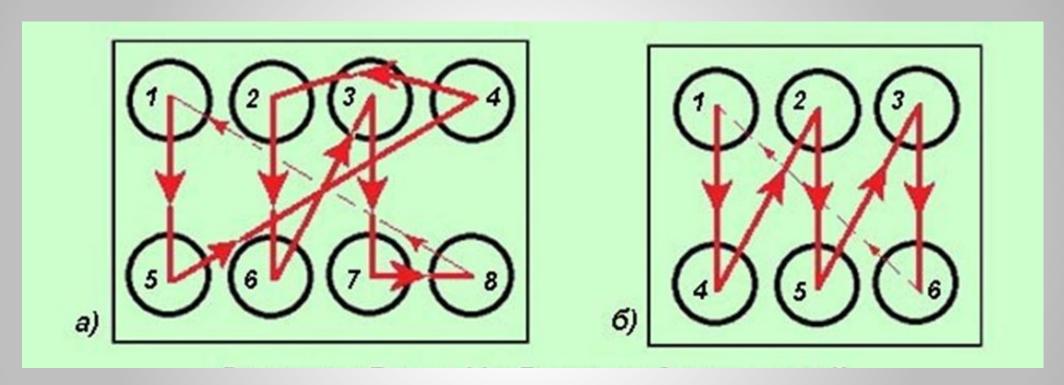


Рисунок 1.2 – Схема работы V-образных двигателей а – восьмицилиндрового, б – шестицилиндрового

Экспериментальные методы исследования наполнения цилиндров свежим зарядом

Для определения неравномерности наполнения цилиндров двигателя был принят:

- способ определения неравномерности наполнения по давлению конца сжатия в цилиндре. Однако для этого необходимо знать зависимость давления конца сжатия от расхода воздуха, либо определять неравномерность в относительных единицах. На величину давления сжатия будет оказывать также различие в степени сжатия по цилиндрам.

Экспериментальная установка статической продувки системы газообмена

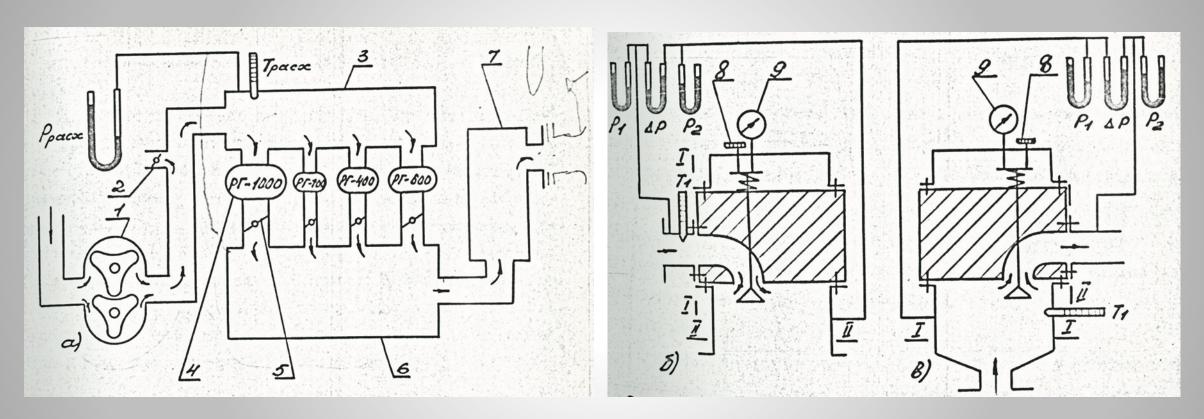


Рисунок 1.3 – Стенд статической продувки

1 — объемный нагнетатель РУТс, 2 — регулировочная заслонка, 3,6,7 — ресиверы, 4 — объемный счетчик газа, 5 — задвижка, 8 — регулировочный винт, 9 — индикатор подъема клапана.

Экспериментальная установка динамической продувки системы газообмена.

1 — ресивер, 2 — электродвигатель, 3 — масляный насос, 4 — масляный фильтр, 5 — масляный бак, 6 — опорная плита, 7 — головка цилиндров, 8 — маховик, 9 — подшипниковый узел, 10 — электродвигатель, 11 — рама электродвигателя, 12 — коллектор впуска, 13 — коллектор выпуска, 14 — патрубок отвода воздуха.

Уточнение граничных условий и усовершенствование системы газообмена на безмоторных стендах

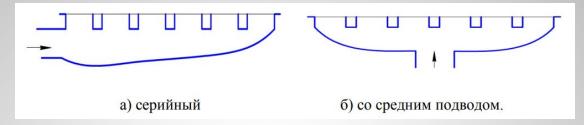


Рисунок 1.5 – Коллектор впуска

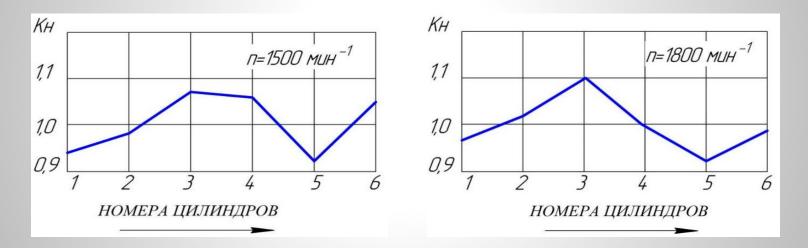


Рисунок 1.6 — Распределение расхода воздуха по цилиндрам дизеля 6ЧН 15/18 при различных скоростных режимах

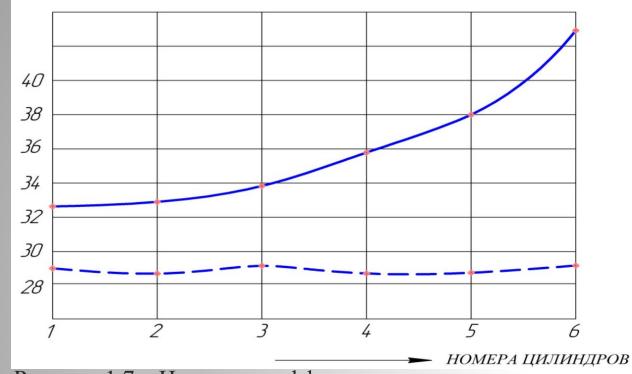


Рисунок 1.7 – Изменение эффективного проходного сечения по длине коллектора

серийный коллектор

———— коллектор со средним подводом

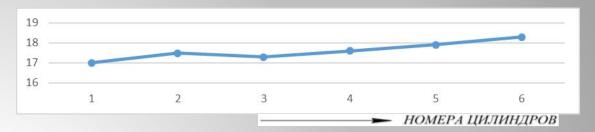
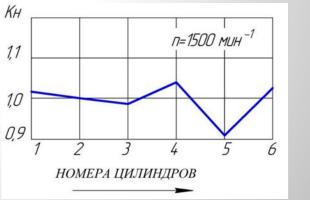



Рисунок 1.8 – Изменение эквивалентного эффективного проходного сечения по длине серийного коллектора (серийная головка)

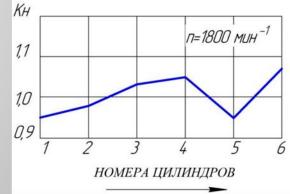


Рисунок 1.9 – Распределение расхода воздуха по цилиндрам на стенде динамической продувки

Исследование возможности усовершенствования

неравномерности наполнения цилиндров двигателя

на математической модели ДИЗЕЛЬ-РК

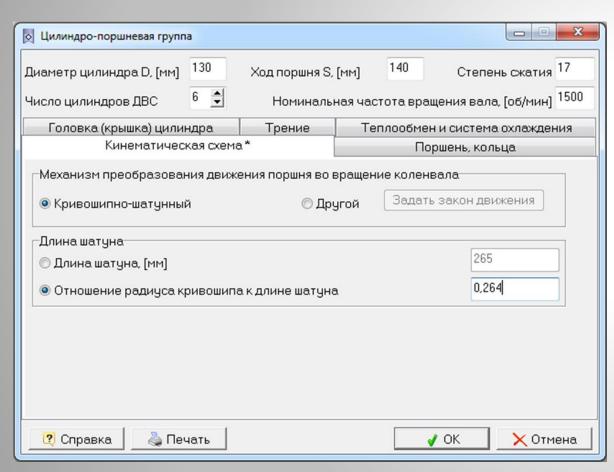


Рисунок 1.10 – Основные геометрические размеры цилиндра

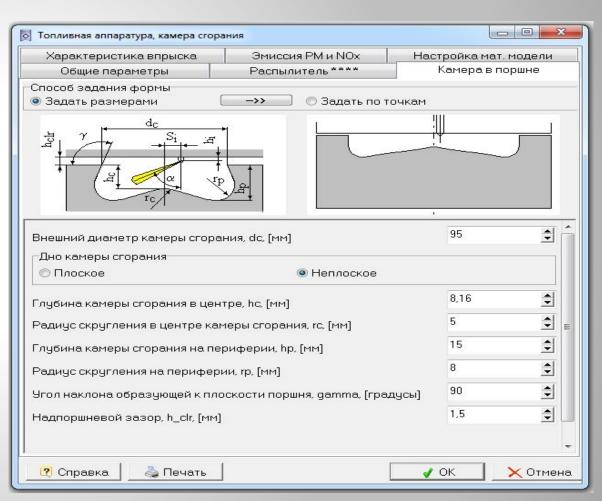
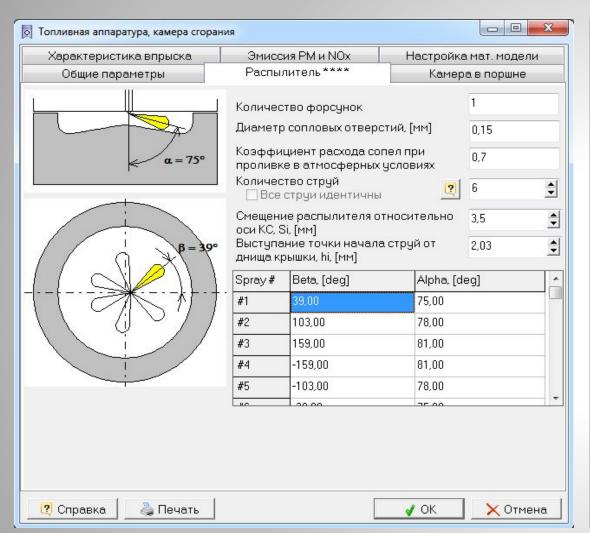



Рисунок 1.11 – Форма камеры сгорания

Режим работы										-			
-Способ расчета рабочего процесса Задать цикловую подачу топлива явно, [г] Вычислить цикловую подачу по величине козфф. избыт	Параметры окружающей среды Задать явно Пересчитать, используя скорость и высоту полета												
-Способ задания потерь во впускном устройстве (до компр ⊚ Задать явно ⊙ Вычислить по перепаду давлений	Опособ задания потерь в выхлопной системе (после турбины) ■ Задать явно Вычислить по перепаду давлений												
Настройки турбины ВД Настройки компрессора ВД #1 "ВРМ=1500. Пк=2.20 " #6													
	L												
#2	L	#7											
#3		#8											
#4		#9											
#5		[#10							11			
Номер режима (#1 = номинальный)	V #1	 #2	# 3	# 4	# 5	# 6	#7	# 8	# 9	#10			
Частота вращения коленчатого вала, [1/мин]	1500	1500	1500	1500	1500	1500	1500	1500	1500	1500			
Цикловая подача топлива qc, [г]	0,1222	0,115	0,115	0,115	0,115	0,115	0,115	0,115	0,115	0,115			
Угол опереж-я впрыска/зажигания, [град. до ВМТ]	8	5	5	5	5	5	5	5	5	5			
Давление окружающей среды, [бар]		1	1	1	1	1	1	1	1	1			
Температура окружающей среды, [К]	288	288	288	288	288	288	288	288	288	288			
Потери давления во впускном устройстве, [бар]	0,02	0,02	0,02	0,02	0,02	0,02	0,02	0,02	0,02	0,02			
Потери давления в выхлопной системе, [бар]	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04			
Степень повышения давления в компрессоре (ВД)	2,2	2,2	2,2	2,2	2,2	2,2	2,2	2,2	2,2	2,2			
Адиабатный КПД компрессора (ВД)		0,705	0,705	0,705	0,705	0,705	0,705	0,705	0,705	0,705			
Доля ОГ, перепускаемых мимо турбины		0	0	0	0	0	0	0	0	0			
Доля воздуха, стравл. после компрессора		0	0	0	0	0	0	0	0	0			
Давление перед турбиной (ВД), (или первое прибл.) [бар]		2	2	2	2	2	2	2	2	2			
КПД агрегата наддува (ВД) 0,482			0,482	0,482	0,482	0,482	0,482	0,482	0,482	0,482			

Рисунок 1.12 – Ориентация топливных струй в камере сгорания

Рисунок 1.13 – Режим работы

Изменяемый параметр	Обозна- чение			Вариант ы		
		1	2	3	4	5
Потеря давления во впускном устройстве	бар	0,02	0,03	0,04	0,05	0,06
Эффективная мощность	кВт	166,78	165,95	165,09	164,14	163,22
Эффективный КПД	-	0,428	0,426	0,423	0,423	0,419
Индикаторный КПД	-	0,458	0,456	0,454	0,454	0,450
Расход воздуха	кг/с	0,260	0,257	0,254	0,251	0,249
Снижение расхода воздуха	%	0	1,17	2,36	3,59	4,42
Удельный эффективный расход топлива	кг/кВт·ч	0,197	0,198	0,2	0,2	0,202
Коэффициент избытка воздуха	-	1,962	1,941	1,919	1,896	1,875

Таблица 1.14 – Изменяемые параметры и полученные результаты

Ne, KBT 168 167 166 165 164 163 162

161

Рисунок 1.15 – Зависимость эффективной мощности

3

5

Эффект.

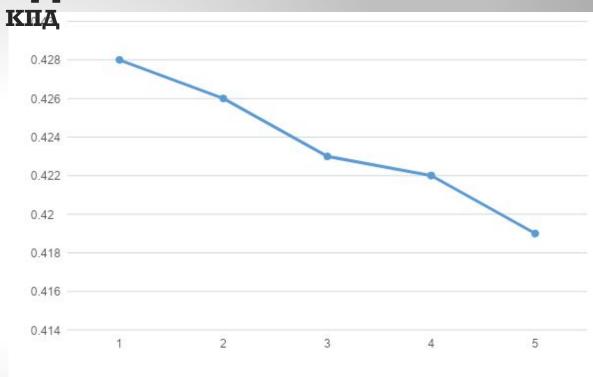


Рисунок 1.16 – Зависимость эффективного кпд

Индикаторный КПД

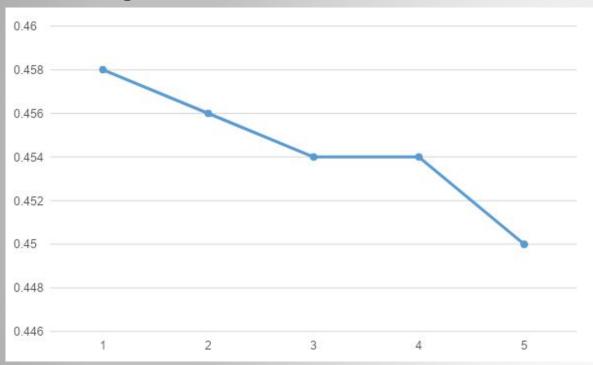


Рисунок 1.17 – Зависимость индикаторного кпд

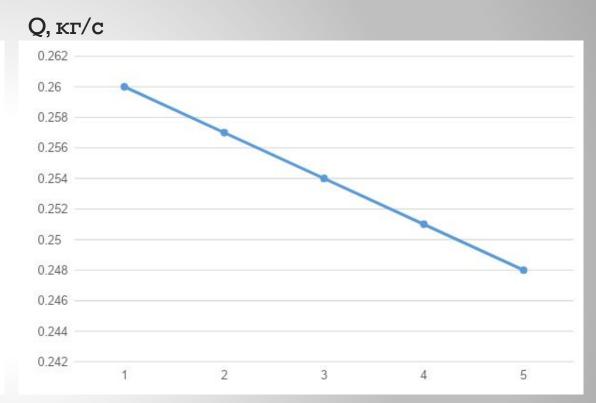


Рисунок 1.18 – Изменение расхода воздуха

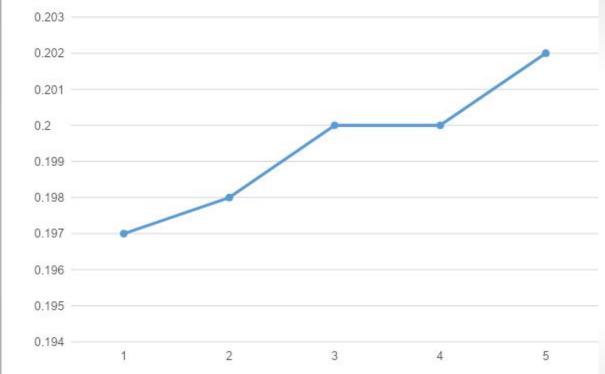


Рисунок 1.19 — Изменение удельного эффективного расхода топлива

Коэф-т избытка воздуха

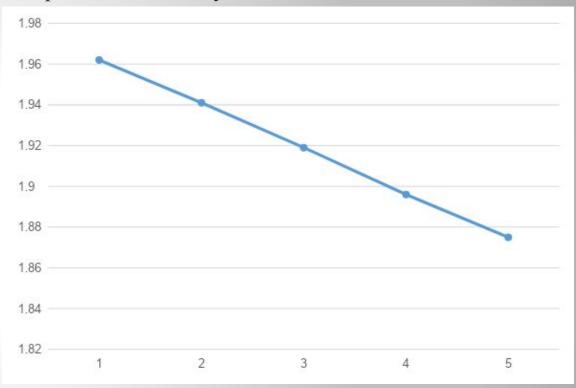


Рисунок 1.20 – Изменение коэффициента избытка воздуха

Вывод

- 1. Осуществлен комплексный меты исследования и доводки элементов системы газообмена.
- 2. Проанализирован стенд динамической продувки. По сравнению с результатами статической продувки неравномерность составляет Влияние коллектора, положение газодинамических явлений приводят к дополнительному снижению гидравлических характеристик, в среднем по головке на 12 14 % по сравнению с результатами статической продувки.
- 3. Исследование на математической модели по программе ДИЗЕЛЬ-РК показано, что увеличение неравномерности наполнения цилиндров свежим зарядом приводит к ухудшению технико-экономических показателей двигателя. Так при снижении расхода воздуха на 4,4% приводит к снижению индикаторного кпд на 2,1%, причем при достаточном а. Дальнейшее снижение а приведет к существенному не догоранию топлива и к более существенному снижению кпд.