
THINKING FUNCTIONALLY WITH HASKELL

COMPLETED BY A STUDENT OF GROUP VTM-10

VLADISLAV ZLOBIN

Sarov 2021

SarFTI NRNU MEPhI
Faculty of Information Technology and Electronics

Department of Computing and Information Technology



TYPES OF PERFORMERS

Informal

Can execute the same algorithm in different ways.

formal

Performs the same algorithm the same way.





PROGRAMMING



PROGRAMMING PARADIGMS

Imperative (procedural, structural, 

object-oriented, etc.)

Declarative (functional and logical)



FUNCTIONAL PROGRAMMING

The basis of functional programming is the calculation of functions (in mathematical terms).



PURE FUNCTION

In programming languages, a pure function is a 

function that:

• Is deterministic;

• Has no side effects.



THE DIFFERENCE BETWEEN IMPERATIVE AND 
FUNCTIONAL PL

The main difference is that imperative languages have states, functional languages do not.

Debugging state changes in imperative languages No need to debug states in functional languages



Because:

• It supports pure functions only;

• It has no states.

Is pure functional programming language



LAZY EVALUATION

Lazy computation allows Haskell to reduce the total amount of computation at the expense of 

computations that will not be used. The programmer can simply describe the dependencies of functions 

from each other and not make sure that "unnecessary calculations" are not carried out.



STATIC TYPING

Haskell has static strong full typing with automatic type inference. These measures allow you to 

effectively catch bugs at the stage of compiling the source code.



AN EXAMPLE OF SOLVING A TASK IN HASKELL

Find all possible right-angled triangles whose side lengths are in the range from 1 to 10 (natural numbers) and 

whose perimeter is 24.



COMPARISON WITH OTHER PL






