

«Математические методы в психологии»

«Корреляционный анализ»

Подготовил: ст. преподаватель Дмитриева С.Ю.

Коэффициент корреляции — двумерная описательная статистика, количественная мера взаимосвязи (совместной изменчивости) двух переменных.

История разработки и применения кк для исследования взаимосвязей фактически началась одновременно с возникновением измерительного подхода к исследованию индивидуальных различий – в 1870-1880 гг.

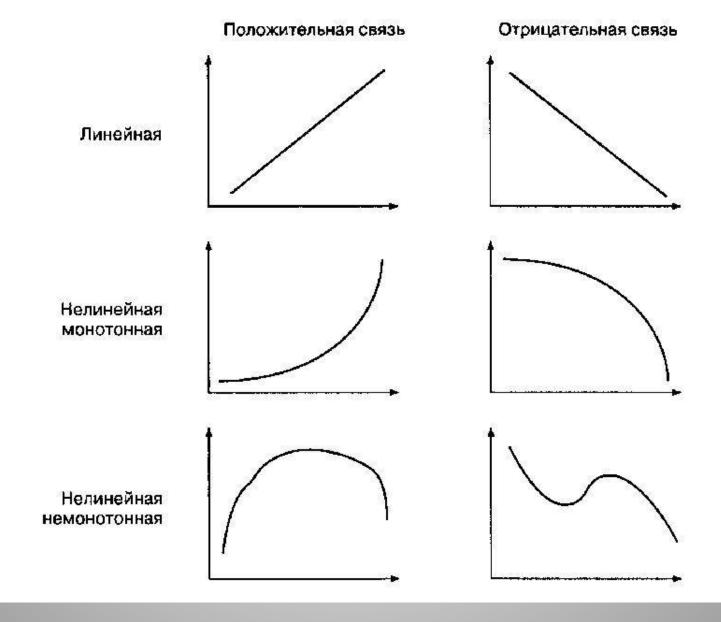
Пионером в измерении способностей человека, как и автором самого термина «коэффициент корреляции», был Френсиз Гальтон, а самые популярные кк были разработаны его последователем Карлом Пирсоном.

3 важных для психологии КК:

- 1. r- Пирсона;
- 2. г-Спирмена;
- 3. t-Кендалла (тау).

Их общая особенность: отражение взаимосвязи 2-х признаков, измеренных в количественной шкале — ранговой или метрической.

Любое исследование можно свести к изучению корреляций. Но! Можно различить 2 класса задач:


- Исследование корреляций 2 переменные представлены в числовой шкале;
- Исследование различий хотя бы одна из 2 переменных представлена в номинативной шкале.

Понятие корреляции

Взаимосвязи на языке математики обычно описываются при помощи функций.

Примеры графиков часто встречающихся функций

Если изменение одной переменной на одну единицу всегда приводит к изменению другой переменной на одну и ту же величину, то функция является <u>линейной</u>.

Любая другая – <u>нелинейной</u>.

Если увеличение одной переменной связано с увеличением другой, то связь – положительная (прямая); если увеличение одной переменной связано с уменьшением другой, то связь - отрицательная (обратная).

Если направление изменения одной переменной не меняется с возрастанием (убыванием) другой переменной, то такая функция — монотонная; в противном случае функцию называют немонотонной.

Важно!

Даже существующая в реальности функциональная связь между переменными выступает эмпирически как вероятностная (стохастическая): одному и тому же значению одной переменной соответствует распределение различных значений другой переменной (и наоборот).

Функциональная связь явлений эмпирически может быть выявлена только как вероятностная связь соответствующих признаков.

Наглядное представление о характере вероятностной связи дает *диаграмма рассеивания* —график, оси которого соответствуют значениям двух переменных, в каждой испытуемый представляет собой точку.

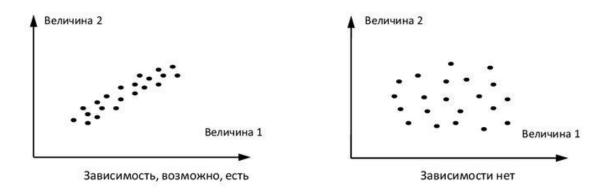


Диаграмма разброса применяется для определения зависимости двух величин друг от друга. Ограничением применения диаграммы разброса является то, что по ней можно с уверенностью сказать, что связи между величинами нет. То, что связь есть, однозначно утверждать нельзя. Признаки наличия зависимости являются лишь предпосылкой для дальнейшего исследования.

Пример диаграмм разброса

Коэффициент корреляции

Это количественная мера силы и направления вероятностной взаимосвязи двух переменных; принимает значение в диапазоне от -1 до +1.

Сила связи достигает максимума при условии взаимно однозначного соответствия: когда каждому значению одной переменной соответствует только одно значение другой переменной (и наоборот), эмпирическая взаимосвязь при этом совпадает с функциональной линейной связью.

Показателем силы связи является абсолютная (без учета знака) *величина* коэффициента корреляции.

Направление связи определяется прямым или обратным соотношением значений 2=х переменных: если возрастание значений одной переменной соответствует возрастанию значений другой переменной, то взаимосвязь называется прямой.

Если одна возрастает, а другая убывает, то – обратной (отрицательной).

Показателем направления связи является знак кк.