Математические методы оценки инвестиций

Лекция №8.2

Ситуация 4.1 (Продолжение)

Вернемся к ситуации с двумя проектами автомобильного завода.

Сравним проект выпуска вездеходов и производства тонированных стекол с помощью критерия IRR.

Внутренняя ставка доходности IRR может быть найдена из уравнений:

$$-14.6 + \frac{3.15}{1 + IRR} + \frac{4.02}{1 + IRR} \times A_{8;IRR} + \frac{4.79}{(1 + IRR)^{10}} = 0;$$

$$-7.5 + \frac{2.3}{1 + IRR} + \frac{2.91}{1 + IRR} \times A_{4;IRR} = 0.$$

Можно показать, что для проекта 1 IRR = 23,13% годовых в у.е., а для проекта 2 — 23,92% годовых. Проект 2 по этому критерию кажется предпочтительнее. Налицо противоречие между двумя критериями, поскольку, как мы видели, чистая приведенная ценность (NPV) выше у проекта 1. Чем оно объясняется?

IRR отражает доходность на единицу вложенного капитала, а NPV — массу дохода. Проект 2 более доходен, но по масштабу капиталовложений в 2 раза меньше, чем проект 1. Если бы мощности по проекту 2 можно было удвоить, то разрыв в NPV между двумя проектами сократился бы:

 $2NPV_2 = 2{,}35$ млн у.е.

Однако и в этом случае проект 2, более доходный, оказался бы менее выгодным по критерию *NPV*, значение которого по проекту 1 составляет 3,21 млн у.е., т.е. противоречие между двумя критериями осталось бы. По какой причине?

Причина в том, что за 10 лет своего существования менее доходный проект 1 принесет большую ценность компании, чем более доходный на единицу времени проект 2.

Следовательно, некорректно сравнивать таким образом между собой два проекта с разными сроками жизни. Ведь после окончания срока полезного использования оборудования производство тонированных стекол не завершится, оборудование вновь будет поставлено и продолжится его использование.

Поэтому реально денежные потоки за 10 лет по проектам 1 и 2 будут выглядеть следующим образом:

Обозначение показа- теля по проектам 1 и 2	Величина показателя, млн у.е., по годам						
	0-й период	1-й	со 2-го по 4-й	5-й	6-й	с 7-го по 9-й	10-й
CF ₁	-14,6	3,15	4,02	4,02	4,02	4,02	4,79
<i>CF</i> ₂ , оборудование 1, удвоенная мощность	-15,0	4,60	5,81	5,81			
<i>CF</i> ₂ , оборудование 2, удвоенная мощность	-	=2	E	-15,00	4,60	5,81	5,81
Итого по удвоенному проекту 2	-15,0	4,60	5,81	-9,19	4,60	5,81	5,81

NPV по проекту 2 в пересчете на 10-летний срок эксплуатации будет равен:

$$NPV_2 = -15 + \dots + \frac{5,81}{(1+0,175)^{10}} = 3,39$$
 млн у.е.

При таком подходе проект 2 выглядит предпочтительнее и по критерию *NPV*, и по критерию *IRR*. Однако при этом необходимо помнить, что увеличение мощности проекта 2 на практике не всегда возможно (могут быть ограничения, связанные с производственной мощностью завода по выпуску автомобилей, а также с емкостью рынка, спросом на тонированные стекла).

Теперь, после приведения проектов к одному масштабу и к одному сроку жизни, противоречие между двумя критериями устранено: и по NPV, и по IRR можно сделать вывод о том, что лучшим является проект 2.