

Подходы к понятию информации и измерению информации. Информационные объекты различных видов. **Универсальность** дискретного (цифрового) представления информации





### ИНФОРМАЦИЯ

- фундаментальное понятие науки, поэтому определить его исчерпывающим образом через какие-то более простые понятия

невозможно

розиции человека информация – это фержание разных сообщений, это самые

#### Подходы к понятию информации

| Теория<br>информации | Информация – содержание, заложенное в знаковые<br>(сигнальные последовательности)                                 |
|----------------------|-------------------------------------------------------------------------------------------------------------------|
| Кибернетика          | Информация – содержание сигналов, передаваемых по каналам связи в системах управления                             |
| Нейрофизио<br>логия  | Информация – содержание сигналов электрохимической природы, передающихся по нервным волокнам организма            |
| Генетика             | Информация – содержание генетического кода – структуры молекул ДНК, входящих в состав клетки живого организма     |
| Философия            | Атрибутивная концепция: Информация – всеобщее свойство (атрибут) материи                                          |
|                      | Функциональная концепция: Информация и информационные процессы присущи только живой природе, являются ее функцией |
|                      | Антропоцентрическая концепция: Информация и информационные процессы присущи только человеку                       |

## Существует два подхода к измерению информации:

- содержательный (вероятностный);
- объемный (алфавитный).

## Содержательный (вероятностный) подход к измерению информации

Количество информации можно рассматривать как меру уменьшения неопределенности знания при получении информационных сообщений.

### Главная формула информатики связывает между собой количество возможных информационных сообщений N и количество информации I, которое несет полученное сообщение:

 $N = 2^{I}$ 

# За единицу количества информации принимается такое количество информации, которое содержится в информационном сообщении, уменьшающем неопределенность знания в два раза.

Такая единица названа бит.

Бит – наименьшая единица измерения информации.

С помощью набора битов можно представить любой знак и любое число. Знаки представляются восьмиразрядными комбинациями битов – байтами.

1байт = 8 битов=2<sup>3</sup>битов
Байт — это 8 битов,
рассматриваемые как единое
целое, основная единица
компьютерных данных.

## Рассмотрим, каково количество комбинаций битов в байте.

• Если у нас **две** двоичные цифры (бита), то число возможных комбинаций из них:

**2**<sup>2</sup>**=4**: 00, 01, 10, 11

• Если **четыре** двоичные цифры (бита), то число возможных комбинаций:

```
2<sup>4</sup>=16: 0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001, 1010, 1011, 1100, 1101, 1110
```

Так как в байте- 8 бит (двоичных цифр), то число возможных комбинаций битов в байте:

2<sup>8</sup>=256

Т.о., байт может принимать одно из 256 значений или комбинаций битов.

## Для измерения информации используются более крупные единицы:

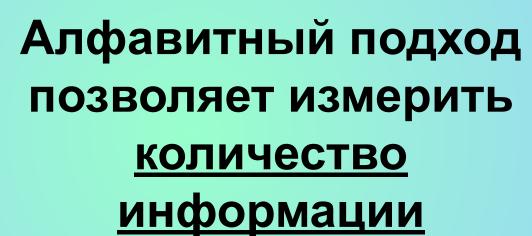
килобайты, мегабайты, гигабайты, терабайты и т.д.

1 Кбайт = 1 024 байт

1 Мбайт = 1 024 Кбайт

1 Гбайт = 1 024 Мбайт

1 Тбайт = 1 024 Гбайт


## Проведем аналогию с единицами длины: <u>если 1 бит «соответствует» 1 мм,</u> то:

1 байт — 10 мм = 1см; 1 Кбайт — 1000 см = 10 м; 1 Мбайт — 10 000 м = 10 км; 1 Гбайт — 10 000 км (расстояние от Москвы до Владивостока).

Страница учебника содержит приблизительно 3 Кбайта информации; 1 газета — 150 Кбайт.

## Объемный (алфавитный подход)

к измерению информации



в тексте, составленном из символов некоторого алфавита.

## Алфавитный подход к измерению информации

Это объективный,

количественный метод для измерения информации, циркулирующей в информационной технике.







Алфавит- множество символов, используемых для представления информации.

Мощность алфавита – число символов в алфавите (его размер) N.





Например, алфавит <u>десятичной</u> <u>системы счисления</u> – множество цифр- 0,1,2,3,4,5,6,7,8,9.

**Мощность** этого алфавита – 10.

Компьютерный алфавит, используемый для представления текстов в компьютере, использует 256 символов.

Алфавит двоичной системы кодирования информации имеет всего два символа- 0 и 1.

Алфавиты русского и английского языков имеют различное число букв, их мощности – различны.

# Информационный вес символа (количество информации в одном символе), выраженный в битах (і), и мощность алфавита (N) связаны между собой формулой:

 $N = 2^i$ 

где N - это количество знаков в алфавите знаковой системы или мощность

Тогда информационный вес символа:

$$i = log_2 N$$

Информационная емкость знаков зависит от их количества в алфавите. Так, информационная емкость буквы в русском алфавите, если не использовать букву «ё», составляет:

32 = 2<sup>1</sup>, I=In32/In2=3.46/0.69=5 I = 5 битов

В латинском алфавите 26 букв. Информационная емкость буквы латинского алфавита также 5 битов.

Количество информации в сообщении или информационный объём текста- Ic, равен количеству информации, которое несет один символ-I, умноженное на количество символов К в сообщении:

$$I_c = K * i \underline{БИТ}$$

Например, в слове «информатика» 11 знаков (К=11), каждый знак в русском алфавите несет информацию 5 битов (I=5), тогда количество информации в слове «информатика» Ic=5x11=55 (битов).

С помощью формулы  $N = 2^I$  можно определить количество информации, которое несет знак в двоичной знаковой системе:  $N=2 \Rightarrow 2=2I \Rightarrow 2^{1}=2^{L} \Rightarrow I=1$  бит

Таким образом, в двоичной знаковой системе 1 знак несет 1 бит информации. При двоичном кодировании объем информации равен длине двоичного кода.

Чем большее количество знаков содержит алфавит знаковой системы, тем большее количество информации несет один знак.

## Информационные объекты различных видов

Информационный объект – обобщающее понятие, описывающее различные виды объектов; это предметы, процессы, явления материального или нематериального свойства, рассматриваемые с точки зрения их информационных свойств.

Простые информационные объекты: звук, изображение, текст, число.

<u>Комплексные (структурированные)</u> <u>информационные объекты</u>:

элемент, база данных, таблица, гипертекст, гипермедиа.

### Информационный объект:

- обладает определенными потребительскими качествами (т.е. он нужен пользователю);
- допускает хранение на цифровых носителях;
- допускает выполнение над ним определенных действий путем использования аппаратных и программных средств компьютера.

| Программы                                           | Информационные объекты                            |
|-----------------------------------------------------|---------------------------------------------------|
| Текстовые редакторы и процессоры                    | Текстовые документы                               |
| Графические редакторы и пакеты компьютерной графики | Графические объекты: чертежи, рисунки, фотографии |
| Табличные процессоры                                | Электронные таблицы                               |
| Пакеты мультимедийных презентаций                   | Компьютерные презентации                          |
| СУБД – системы управления базами данных             | Базы данных                                       |
| Клиент-программа электронной почты                  | Электронные письма, архивы,<br>адресные списки    |
| Программа-обозреватель Интернета (браузер)          | Web-страницы, файлы из архивов<br>Интернета       |

## Универсальность дискретного (цифрового) представления информации.

## Текстовая информация дискретна– состоит из отдельных знаков

Для обработки текстовой информации на компьютере необходимо представить ее в двоичной знаковой системе. Каждому знаку необходимо поставить в соответствие уникальный 8-битовый двоичный код, значения которого находятся в интервале от 00000000 до 11111111 (в десятичном коде от 0 до 255).

## Дискретное (цифровое) представление графической информации

- Изображение на экране монитора дискретно. Оно составляется из отдельных точек- пикселей.
- Пиксель минимальный участок изображения, которому независимым образом можно задать цвет.

В процессе дискретизации могут использоваться различные палитры цветов. Каждый цвет можно рассматривать как возможное состояние точки.

Количество цветов N в палитре и количество информации I, необходимое для кодирования цвета каждой точки, вычисляется по формуле:

 $N = 2^{I}$ 

### Пример

Наиболее распространенными значениями глубины цвета при кодировании цветных изображений являются 4, 8, 16 или 24 бита на точку. Можно определить количество цветов в 24-битовой палитре: N  $= 2^1 = 2^{24} = 16777216$ ит.

## Дискретное (цифровое) представление звуковой информации

<u>Частота дискретизации звука</u> — это количество измерений громкости звука за одну секунду.

<u>Глубина кодирования звука</u> — это количество информации, которое необходимо для кодирования дискретных уровней громкости цифрового звука.

Если известна глубина кодирования, то количество уровней громкости цифрового звука можно рассчитать по формуле

$$N = 2^{I}$$

## Дискретное (цифровое) представление видеоинформации

ВИДЕОИНФОРМАЦИЯ -это сочетание звуковой и графической информации. Кроме того, для создания на экране эффекта движения используется дискретная технология быстрой смены статических картинок.

Способ уменьшения объема видео: первый кадр запоминается целиком (ключевой), а в следующих сохраняются только отличия от начального кадра (разностные кадры).

- Алфавит племени Мульти состоит из 8 букв. Какое количество информации несёт одна буква этого алфавита?
- Ответ: 3 бита.
- Сообщение, записанное буквами 64-х символьного алфавита, содержит 20 символов. Какой информационный объём оно несёт?
- Ответ: 120 бит.

- Племя Мульти имеет 32-х символьный алфавит. Племя Пульти использует 64х символьный алфавит. Вожди племён обменялись письмами. Письмо племени Мульти содержало символов, а письмо племени Пульти – 70 символов. Сравните объёмы информации, содержащейся письмах.
- Ответ: 400 бит и 420 бит соответственно

• Задача про марсиан!!!



Приветствие участникам олимпиады от марсиан записано с помощью всех символов марсианского алфавита:

#### ТЕВИРП!КИ!

Сколько информации оно несет?

Ответ: 30 бит.

• ДНК человека (генетический код) можно представить себе как некоторое слово в четырёхбуквенном алфавите, где каждой буквой помечается звено цепи ДНК, или нуклеотид.

Сколько информации (в битах) содержит ДНК человека, содержащий примерно

**1,5\*10**<sup>23</sup> нуклеотидов?

Ответ:3\*10<sup>23</sup> бит

#### ЗАДАЧИ на дом

- 1. Информационное сообщение объёмом 1,5 Кбайта содержит 3072 символа. Сколько символов содержит алфавит, при помощи которого было записано это сообщение?
- 2. Сообщение занимает 2 страницы и содержит 1/16 Кбайта информации. На каждой странице записано 256 символов. Какова мощность используемого алфавита?
- 3. Сколько килобайтов составляет сообщение, содержащее 12288 битов?

#### РЕШЕНИЕ задачи1

• Надо найти мощность алфавита N.

По условию задачи

I=1,5 Кб=1.5\*1024\*8=12 288 бит

I=i\*k Значит, i=I/k=12 288/ 3072 = 4 бита

Так как  $N=2^i$ , то  $N=2^4=16$  символов.

ОТВЕТ: 16 символов



# Остальные задачи попробуйте решить самостоятельно!!! УСПЕХА!!!!

