
УРОК ФИЗИКИ В 10 КЛАССЕ

Уравнение состояния

$$pV = \frac{m}{M}RT$$

- p давление идеального газа
- V объем идеального газа
- m масса газа
- M- молярная масса газа
- R универсальная газовая постоянная
- Т абсолютная температура идеального газа

ВОПРОСЫ

- 1. Что называется идеальным газом?
- 2. Назовите макроскопические параметры
- 3. Как температуру выразить в кельвинах?
- 4. Почему не может быть T < 0?
- 5. От чего зависит энергия молекул?
- 6. Как измерили скорость молекул?

ВСПОМНИМ ФОРМУЛЫ

$$E = \frac{3}{2}kT$$

$$p = nkT$$

$$n = \frac{N}{V}$$

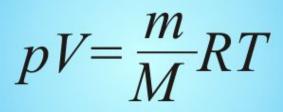
$$v = \frac{m}{M} = \frac{N}{N_A}$$

 $N_A = 6 \cdot 10^{23} mon^{-1}$ - число Авогадро

 $k = 1,38 \cdot 10^{-23}$ Дж/К - постоянная Больцмана

ОБЪЕДИНИМ ПАРАМЕТРЫ р, V, T

• Объединим три формулы:


-23

1)
$$p = nkT$$
 2) $n = \frac{N}{V}$ 3) $N = \frac{m}{M}N_A$

Получим:
$$pV = \frac{m}{M}kN_{A}T$$
 заменим $R =$

23

Уравнение Менделеева – Клайперона

р – давление идеального газа

V — объем идеального газа

т – масса газа

M— молярная масса газа

R — универсальная газовая постоянная

Т – абсолютная температура идеального газа

УРАВНЕНИЕ СОСТОЯНИЯ

• Еще две полезные формулы

$$pV = vRT$$

$$p = \frac{\rho}{M} RT$$

где **v** – количество вещества (моль)

 ρ – плотность газа (кг/м³)

От чего зависит плотность газа?

$$\rho = \frac{pM}{RT}$$

Уравнение перехода

Возьмем два состояния газа одной

массы

1 – состояние

$$p_1 V_1 = \frac{m}{M} R T_1 \longrightarrow \frac{p_1 V_1}{T_1} = \frac{m}{M} R$$

$$p_2V_2 = \frac{m}{M}RT_2 \longrightarrow \frac{p_2V_2}{T_2} = \frac{m}{M}R$$
 2 — состояние

$$\frac{p_1 V_1}{T_1} = \frac{p_2 V_2}{T_2}$$

НОРМАЛЬНЫЕ УСЛОВИЯ

- 1. Давление равно атмосферному р=1атм= 1,013·10⁵ Па ≈10 Па
- 2. Температура равна 0°C

T = 273K

Задача: найти объём 1моля газа при нормальных условиях

• Дано:

$$\nu = 1$$
моль

$$T = 273K$$

• Дано:

$$\nu$$
 = 1моль

$$T = 273K$$

$$pV = vRT \longrightarrow V = V$$

$$V = \frac{vRT}{p}$$

• Дано:

$$\nu$$
 = 1моль

$$T = 273K$$

Решение

$$pV = vRT \longrightarrow V = \frac{vRT}{p}$$

$$V = \frac{1 monb \cdot 8, 3 \cdot 273}{100000} = 0,0226 m^3 = 22,6 \pi$$

Ответ: 22,6л

•При температуре $10^{\circ}C$ и давлении 100 кПа воздух занимает объём 5л. Каким будет объём данной массы воздуха при давлении 80кПа и температуре 60°C?

• Дано:

$$t_1 = 10^{\circ} C$$

$$V_1 = 5л$$

$$t_2 = 60^{\circ}C$$

$$V_2$$
 - ?

CN

• Дано:

СИ

 $t_1 = 10^{\circ}C$

283K

р₁ = 100кПа

10⁵ Πa

 $V_1 = 5л$

 $0,005M^{3}$

 $t_2 = 60^{\circ}C$

333ºC

p₂ = 80кПа 8·10⁴ Па

 V_2 - ?

• Дано:

$$t_1 = 10^{\circ} C$$

р₁ = 100кПа

$$V_1 = 5л$$

$$t_2 = 60^{\circ} C$$

p₂ = 80кПа 8·10⁴ Па

$$V_2 - ?$$

СИ

283K

10⁵ Πa

 $0.005 \,\mathrm{M}^3$

333ºC

$$\frac{p_1 V_1}{T_1} = \frac{p_2 V_2}{T_2}$$

$$V_2 = \frac{p_1 V_1 T_2}{p_2 T_1}$$

• Дано:

$$t_1 = 10^{\circ} C$$

р₁ = 100кПа

$$V_1 = 5л$$

$$t_2 = 60^{\circ}C$$

СИ

283K

10⁵ Πa

 $0,005M^3$

333ºC

Решение

$$\frac{p_1 V_1}{T_1} = \frac{p_2 V_2}{T_2}$$

$$V_2 = \frac{p_1 V_1 T_2}{p_2 T_1}$$

 $V_2 - ?$

$$V_2 = \frac{10^5 \cdot 0,005 \cdot 333}{8 \cdot 10^4 \cdot 283} = 0,00735 \text{M}^3 = 7,35 \text{L}$$