Kufa's university

Respiration Module

Session 4 – Lung function testing

Lung function testing

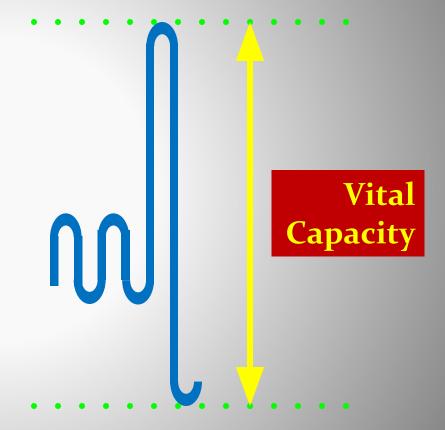
tests need to assess

- the mechanical condition of the lungs
- resistance of the airways
- diffusion across alveolar membrane

Pulmonary Function Test

- Spirometry
- Lung volumes
- Diffusions capacity
 - Oxygen saturation and ABG(arterial blood gases) analysis.

PFT'S	
FVC:	Forced Vital Capacity means the total volume (in liters) of air a person can expel by exhaling as hard as possible for as long as possible (normally six seconds).
FEV1:	Forced Expiratory Volume at 1 second means the volume (in liters) of air expelled (exhaled) as hard as possible in the first second of effort.
FEV1%	The FEV1 observed divided by the FEV1 predicted (based upon an individual's gender, height, and age).
FEV1/FVC:	The FEV1 observed divided by the FVC observed.
PEF:	Peak Expiratory Flow means the maximal flow (in liters) of expiration achieved. This occurs at the onset of expiration.


Non invasive testing

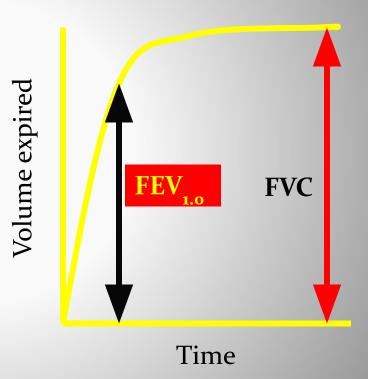
- lung function may be inferred from measurement of
 - volumes
 - pressures/flows composition

at the mouth

Volume

remember the spirometer
vital capacity
maximum inspiration to maximum expiration

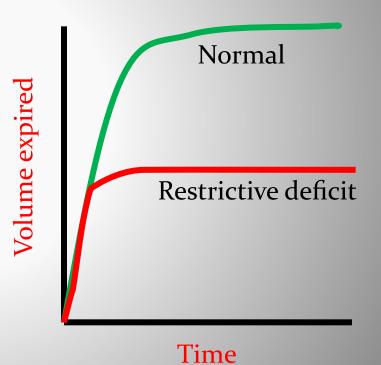
?What limits vital capacity


maximum inspiration
compliance of the lungs
force of inspiratory muscles
maximum expiration
increasing airway resistance
as the lungs are compressed

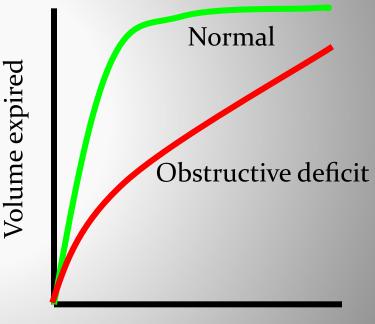
If vital capacity is less than normal

tables predict what vital capacity should be
 if less maybe because
 cannot breathe in maximally
 cannot breathe out maximally
 how to tell the difference?

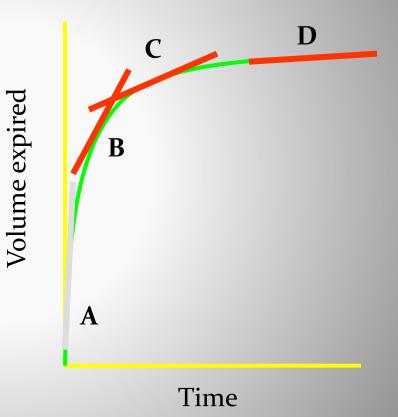
Vital-ograph trace

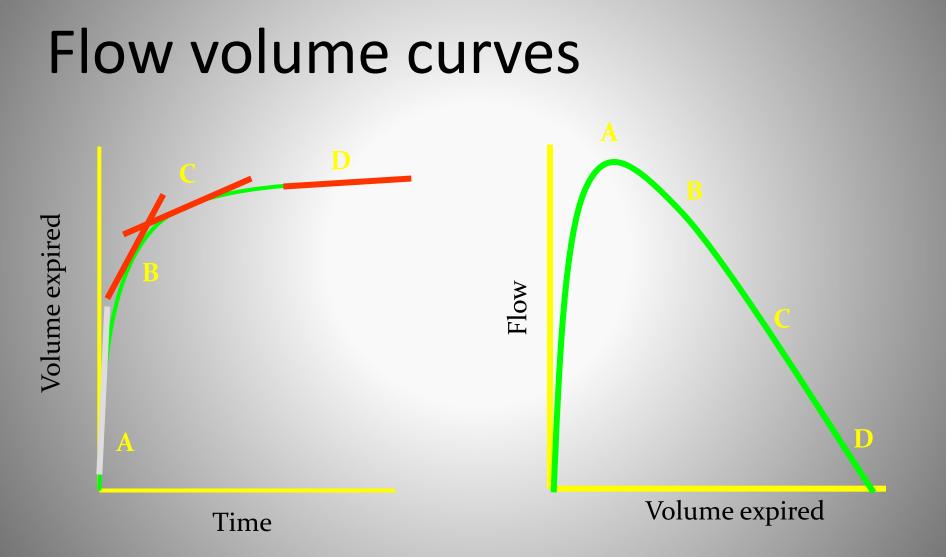

plot of volume
expired vs time
initial rapid rise
tails to a plateau

Restrictive deficit

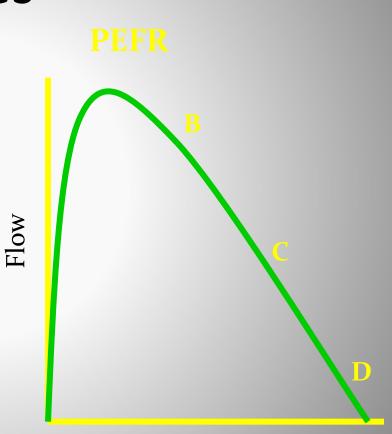

- if lungs are difficult to fill
 - stiff
 - weak muscles
 - problem with chest wall
- they will start less full so FVC will be reduced
- but air will come out normally

so FEV_{1.0} will be >70% FVC


Obstructive deficit


- if airways are narrowedlungs will still be easy to fill
- but resistance will increase in expiration
- so air will come out more slowly
- and FEV_{1.0} will be reduced but FVC be relatively normal

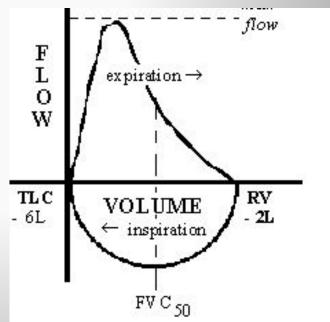
Time


plot of volume expired
against flow rate
derived from
vitalograph trace

when lungs are full • little air expired • airways stretched so resistance at minimum flow rate will be maximal **Peak Expiratory Flow**

Rate (PEFR)

Volume expired


- as lungs are compressed
 - more air expired
 - airways begin to narrow
 - resistance increases
- flow rate falls
 - the narrower the airways to start with the more rapidly it falls

Volume expired

a much more sensitive indicator of airway narrowing can also discriminate large & small airway narrowing

This is Flow-Volume loop

Peak Expiratory Flow Rate

can be measured with a simple, cheap device
so often used as a screening test for airway narrowing
but very insensitive

Measurement of Residual volume

- cannot be measured by spirometer use Helium dilution
- Nitrogen Washout
- Body Plethysmography

Nitrogen washout

subject takes one normal breath of pure oxygen breathes out via meter measuring % nitrogen initially only oxygen expired from airways Nitrogen washout. Until recently, this was the most commonly used method of lung volume determination. In this technique, 100% oxygen in inhaled briefly and nitrogen in the exhaled gas is measured - this allows calculation of the total amount of gas in the lung originally.

Helium dilution

- helium not normally present in air and insoluble in blood
- breathe in known concentration
- starting at FRC
- and see how much concentration reduced by mixing with air already in lungs

Measuring diffusion conductance

- measure how easily carbon monoxide crosses from alveolar air to blood
- use CO because binding to Hb means no partial pressure in mixed venous blood

- Vital Capacity
- FEV_{1.0} (before after bronchodilators)
 ratio FEV_{1.0} /FVC
- Peak Expiratory Flow

- FRC
- RV
- TLC total lung capacityRV/TLC

- transfer factor
- carbon monoxide conductance

learn how to interpret them!

Formative assessment Exam

- 1- Enumerate the component of PFT.
 - 2- What are the difference in the meaning of Flow-Volume curve and Flow-Volume Loop?.
 - 3- Determine the volumes compose TLC.
 - 4- Are there any contraindication to order PFT?. Please enumerate it.
 - 5- List the benefit of doing PFT,