
© 2006 Pearson Education, Inc. All rights reserved.

1

Introduction
to C++

Programming

© 2006 Pearson Education, Inc. All rights reserved.

2

OBJECTIVES

In this lecture you will learn:
1.To write simple computer programs in C++.
2.To write simple input and output statements.
3.To use fundamental types.
4.Basic computer memory concepts.

© 2006 Pearson Education, Inc. All rights reserved.

3

 Introduction

C++ Programming

1. Facilitates disciplined approach to computer program design
2. Programs process information and display results

 Examples Demonstrate

3. How to display messages
4. How to obtain information from the user

© 2006 Pearson Education, Inc. All rights reserved.

4

First Program in C++: Printing a Line of Text

Simple Program

– Prints a line of text
– Illustrates several important features of C++

© 2006 Pearson Education,
Inc. All rights reserved.

5
Outline

fig02_01.cpp
(1 of 1)

fig02_01.cpp
output (1 of 1)

Single-line comments

Preprocessor directive to
include input/output stream
header file <iostream>Function main appears

exactly once in every C++
program

Function main returns an
integer valueLeft brace { begins function

body

Corresponding right brace }
ends function body

Statements end with a
semicolon ;

Name cout belongs to
namespace std

Stream insertion operator

Keyword return is one of
several means to exit a
function; value 0 indicates
that the program terminated
successfully

© 2006 Pearson Education, Inc. All rights reserved.

6

Good Programming Practice

Every program should begin with a comment that
describes the purpose of the program, author, date and
time.

© 2006 Pearson Education, Inc. All rights reserved.

7

Common Programming Error

Forgetting to include the <iostream> header file in a
program that inputs data from the key board or outputs
data to the screen causes the compiler to issue an error
message, because the compiler cannot recognize
references to the stream components (e.g. cout).

© 2006 Pearson Education, Inc. All rights reserved.

8

Common Programming Error

Syntax errors are also called compiler errors, compile-time errors
or compilation errors, because the compiler detects them during the
compilation phase. You will be unable to execute your program
until you correct all the syntax errors in it. As you will see, some
compilation errors are not syntax errors.

© 2006 Pearson Education, Inc. All rights reserved.

9

© 2006 Pearson Education, Inc. All rights reserved.

10

© 2006 Pearson Education, Inc. All rights reserved.

Tokens: The smallest individual units of a program are called
tokens.

1. Constants
2. Variables
3. Keywords
4. Data Types
A C++ program is written using these tokens, white

spaces , and the syntax of the language.

11

© 2006 Pearson Education, Inc. All rights reserved.

Constants , Identifiers and Keywords
The alphabets , numbers and special symbols when properly combined

form constants , identifiers and keywords.

Constant: a constant is a quantity that does not change. This can be
stored at a location in memory of computer.

Variable(identifiers) : is considered as a name given to the location
in memory where this constant is stored. Naturally the contents of
the variable can change. There are fundamental requirement of any
language. Each language has its own rules for naming these
identifiers.

12

© 2006 Pearson Education, Inc. All rights reserved.

Following are the rules for naming identifiers:

1. Only alphabetic characters digits and underscores are permitted.
2. The name cannot start with a digit.
3. Uppercase and Lowercase letters are distinct
4. A declared keyword cannot be used as a variable name.

For Example:
3X + Y = 20

13

© 2006 Pearson Education, Inc. All rights reserved.

Keywords

Keywords implement specific C++ language features.
They are explicitly reserved identifiers and cannot be
used as names for the program variables or other
user defined program elements.

14

© 2006 Pearson Education, Inc. All rights reserved.

15

© 2006 Pearson Education,
Inc. All rights reserved.

Data Type

Data Type : type of data to be stored in a variable

Primitive data type (built-in data type): provided as an integral part of the
language

Integer type
Real type

int val;

© 2006 Pearson Education,
Inc. All rights reserved.

Primitive Data Type

Primitive Type

I
N
T
E
G
E
R

R
E
A
L

or more big

or more

© 2006 Pearson Education,
Inc. All rights reserved.

Primitive Data Type

Why do we need to define the type of data?

1. Efficient use of memory space

2. Data loss can happen when store big data into small
memory space

© 2006 Pearson Education,
Inc. All rights reserved.

Primitive Data Type

sizeof operator

Return memory size of operand in byte
Need () when the operand is data type
Otherwise () is optional

#include <iostream>
using namespace std;
int main(void)
{

int val=10;
cout << sizeof val << endl;// print memory size

 cout << sizeof(int) << endl;// print int data type

return 0;
}

© 2006 Pearson Education,
Inc. All rights reserved.

Primitive Data Type

Criteria of selection of data type

Real type data
Accuracy
‘double’ is common

Data type Accuracy

6th below decimal point

15th below decimal point

More accurate than double

© 2006 Pearson Education,
Inc. All rights reserved.

Primitive Data Type

Example

#include <iostream>
#include <iomanip>
using namespace std;
int main(void)
{

double radius;
double area;
cout << "Input radius of circle" << endl;
cin >> radius;
area = radius * radius * 3.1415;

 cout << area;
return 0;

}

© 2006 Pearson Education,
Inc. All rights reserved.

Primitive Data Type

unsigned: the range of data is changed

Positive integer only
Can not be used in real data type

Data type Byte Range

© 2006 Pearson Education,
Inc. All rights reserved.

Primitive Data Type

How to express letter (including characters, notations, …) inside
computer?

 ASCII (American Standard Code for Information Interchange)
code was born for expressing letters.
Defined by ANSI (American National Standard Institute)
The standard of letter expression by computer
Ex) letter ‘A’ 🡪 65, letter ‘B’ 🡪 66

© 2006 Pearson Education,
Inc. All rights reserved.

Primitive Data Type

Range of ASCII code

0 ~ 127, 🡪 possible using ‘char’ type
Declare ‘char’

 Expression of letters

‘’ (quotation mark)

Declare “store letter A into
variable ch1”

Refer ASCII code table

Change ‘A’ into 65 and store it.

© 2006 Pearson Education,
Inc. All rights reserved.

Primitive Data Type

Example

#include <iostream>
using namespace std;
int main(void)
{

char ch1='A';
char ch2=65;

cout << ch1 <<endl << ch2 << endl;
cout << (int)ch1 << endl << (int)ch2 <<endl;

return 0;
}

© 2006 Pearson Education,
Inc. All rights reserved.

Primitive Data Type

ASCII code

© 2006 Pearson Education,
Inc. All rights reserved.

Symbolic Constant

Make ‘variable’ to ‘constant’

#include <iostream>
using namespace std;
int main(void)
{

const int MAX = 100;
const double PI = 3.1415;
return 0;

}

© 2006 Pearson Education, Inc. All rights reserved.

28

 Another C++ Program: Adding Integers

• Variables
– Location in memory where value can be stored
– Common data types (fundamental, primitive or built-in)

• int – integer numbers
• char – characters
• double – floating point numbers

– Declare variables with name and data type before use
• int integer1;
• int integer2;
• int sum;

© 2006 Pearson Education, Inc. All rights reserved.

29

Another C++ Program: Adding Integers
(Cont.)

• Variables (Cont.)
– Can declare several variables of same type in one

declaration
• Comma-separated list
• int integer1, integer2, sum;

– Variable names
• Valid identifier

– Series of characters (letters, digits, underscores)
– Cannot begin with digit
– Case sensitive (upper and lower case letter)

• Keywords

© 2006 Pearson Education,
Inc. All rights reserved.

30
Outline

fig02_05.cpp

(1 of 1)

fig02_05.cpp
output (1 of 1)

Declare integer variables

Use stream extraction
operator with standard input
stream to obtain user input

Stream manipulator
std::endl outputs a
newline, then “flushes output
buffer”

Concatenating, chaining or
cascading stream insertion
operations

© 2006 Pearson Education, Inc. All rights reserved.

31

Good Programming Practice

Place a space after each comma (,) to make
programs more readable.

© 2006 Pearson Education, Inc. All rights reserved.

32

Good Programming Practice

Some programmers prefer to declare each
variable on a separate line. This format allows
for easy insertion of a descriptive comment next
to each declaration.

© 2006 Pearson Education, Inc. All rights reserved.

33

Portability Tip

C++ allows identifiers of any length, but your C++
implementation may impose some restrictions on
the length of identifiers. Use identifiers of 31
characters or fewer to ensure portability.

© 2006 Pearson Education, Inc. All rights reserved.

34

Good Programming Practice

Choosing meaningful identifiers helps make a
program self-documenting—a person can
understand the program simply by reading it
rather than having to refer to manuals or
comments.

© 2006 Pearson Education, Inc. All rights reserved.

35

Good Programming Practice

Always place a blank line between a declaration
and adjacent executable statements. This makes
the declarations stand out in the program and
contributes to program clarity.

© 2006 Pearson Education, Inc. All rights reserved.

36

Another C++ Program: Adding Integers
(Cont.)

• Input stream object
– std::cin from <iostream>

• Usually connected to keyboard
• Stream extraction operator >>

– Waits for user to input value, press Enter (Return) key
– Stores value in variable to right of operator

• Converts value to variable data type
• Example

– std::cin >> number1;
• Reads an integer typed at the keyboard
• Stores the integer in variable number1

© 2006 Pearson Education, Inc. All rights reserved.

37

 Another C++ Program: Adding Integers
(Cont.)

• Assignment operator =
– Assigns value on left to variable on right
– Binary operator (two operands)
– Example:

• sum = variable1 + variable2;
– Add the values of variable1 and variable2
– Store result in sum

• Stream manipulator std::endl
– Outputs a newline
– Flushes the output buffer

© 2006 Pearson Education, Inc. All rights reserved.

38

Another C++ Program: Adding Integers
(Cont.)

• Concatenating stream insertion operations
– Use multiple stream insertion operators in a single statement

• Stream insertion operation knows how to output each type of data
– Also called chaining or cascading
– Example

• std::cout << "Sum is " << number1 + number2
 << std::endl;

– Outputs "Sum is “
– Then, outputs sum of number1 and number2
– Then, outputs newline and flushes output buffer

© 2006 Pearson Education, Inc. All rights reserved.

39

 Memory Concept

• Variable names
– Correspond to actual locations in computer's memory

• Every variable has name, type, size and value
– When new value placed into variable, overwrites old value

• Writing to memory is destructive
– Reading variables from memory nondestructive
– Example

• sum = number1 + number2;
– Value of sum is overwritten
– Values of number1 and number2 remain intact

© 2006 Pearson Education, Inc. All rights reserved.

40

Fig. 2.6 | Memory location showing the name and value of variable number1.

© 2006 Pearson Education, Inc. All rights reserved.

41

Fig. 2.7 | Memory locations after storing values for number1 and number2.

© 2006 Pearson Education, Inc. All rights reserved.

42

Fig. 2.8 | Memory locations after calculating and storing the sum of number1 and
number2.

© 2006 Pearson Education, Inc. All rights reserved.

43

Arithmetic

• Arithmetic operators
– *

• Multiplication
– /

• Division
• Integer division truncates remainder

– 7 / 5 evaluates to 1
– %

• Modulus operator returns remainder
– 7 % 5 evaluates to 2

© 2006 Pearson Education, Inc. All rights reserved.

44

Common Programming Error

Attempting to use the modulus operator (%) with
non integer operands is a compilation error.

© 2006 Pearson Education, Inc. All rights reserved.

45

Arithmetic (Cont.)

• Straight-line form
– Required for arithmetic expressions in C++
– All constants, variables and operators appear in a straight

line

• Grouping subexpressions
– Parentheses are used in C++ expressions to group

subexpressions
• Same manner as in algebraic expressions

– Example
• a * (b + c)

– Multiple a times the quantity b + c

© 2006 Pearson Education, Inc. All rights reserved.

46

Fig. 2.9 | Arithmetic operators.

© 2006 Pearson Education, Inc. All rights reserved.

47

2.6 Arithmetic (Cont.)

• Rules of operator precedence
– Operators in parentheses evaluated first

• Nested/embedded parentheses
– Operators in innermost pair first

– Multiplication, division, modulus applied next
• Operators applied from left to right

– Addition, subtraction applied last
• Operators applied from left to right

© 2006 Pearson Education, Inc. All rights reserved.

48

Common Programming Error 2.4

Some programming languages use operators **
or ^ to represent exponentiation. C++ does not
support these exponentiation operators; using
them for exponentiation results in errors.
Use pow(A, B) = A^B function in C++

© 2006 Pearson Education, Inc. All rights reserved.

49

Fig. 2.11 | Order in which a second-degree polynomial is evaluated.

© 2006 Pearson Education, Inc. All rights reserved.

50

Decision Making: Equality and Relational
Operators

• Condition
– Expression can be either true or false
– Can be formed using equality or relational operators

•if statement
– If condition is true, body of the if statement executes
– If condition is false, body of the if statement does not

execute

© 2006 Pearson Education, Inc. All rights reserved.

51

Fig. 2.12 | Equality and relational operators.

© 2006 Pearson Education, Inc. All rights reserved.

52

Common Programming Error 2.5

A syntax error will occur if any of the operators
==, !=, >= and <= appears with spaces between its
pair of symbols.

© 2006 Pearson Education, Inc. All rights reserved.

53

Common Programming Error

Reversing the order of the pair of symbols in any
of the operators !=, >= and <= (by writing them
as =!, => and =<, respectively) is normally a
syntax error. In some cases, writing != as =! will
not be a syntax error, but almost certainly will be
a logic error that has an effect at execution time.
(cont…)

© 2006 Pearson Education,
Inc. All rights reserved.

54
Outline

fig02_13.cpp

(1 of 2)
using declarations eliminate
need for std:: prefix

Can write cout and cin
without std:: prefix

Declare variables

if statement compares values
of number1 and number2 to
test for equality

If condition is true (i.e.,
values are equal), execute this
statementif statement compares values

of number1 and number2 to
test for inequality

If condition is true (i.e.,
values are not equal), execute
this statement

Compares two numbers using
relational operator < and >

© 2006 Pearson Education,
Inc. All rights reserved.

55
Outline

fig02_13.cpp

(2 of 2)

fig02_13.cpp
output (1 of 3)

(2 of 3)

(3 of 3)

Compares two numbers using
relational operators <= and >=

© 2006 Pearson Education, Inc. All rights reserved.

56

Common Programming Error

It is a syntax error to split an identifier by
inserting white-space characters (e.g., writing
main as ma in).

