Int}od uction
to C++
Programming

OBJECTIVES

In this lecture you will learn:
1.To write simple computer programs in C++.
2.To write simple input and output statements.

3.To use fundamental types.
4.Basic computer memory concepts.

<4 >

© 2006 Pearson Education, Inc. All rights reserved.

Introduction

C++ Programming

1. Facilitates disciplined approach to computer program design

2. Programs process information and display results

Examples Demonstrate

3. How to display messages

4. How to obtain information from the user

© 2006 Pearson Education, Inc. All rights reserved.

First Program in C++: Printing a Line of Text

Simple Program

— Prints a line of text
— Illustrates several important features of C++

© 2006 Pearson Education, Inc. All rights reserved.

/1 Fig. 2.1: fig02_01. cpp
// Text-printing proaram

>

#i nclude <iostrea

Function main returns an

Single-line comments

body

Left brace { begins function

directive to

Outline

/o1

std:: cout << "Welcone to

L] Statements end with a

2_01.cpp
f 1)

exactly once in every C+ Semicolon ;
program

=4

W 00 ~N O 0 A WN -
~—
S
—
c
=

Co

onding right brace }

cndsu

12 } // end function main

VWelcome to C++!

Namd Stream insertion operator

amesnace std

Keyword return is one of
| several means to exit a
function; value 0 indicates
that the program terminated
successfully

<

fig02_01.cpp
output (1 of 1)

<

© 2006 Pearson Education,
Inc. All rights reserved.

Good Programming Practice

Every program should begin with a comment that
describes the purpose of the program, author, date and
time.

© 2006 Pearson Education, Inc. All rights reserved.

Forgetting to include the <iostream> header file 1n a
program that inputs data from the keyboard or outputs
data to the screen causes the compiler to 1ssue an error
message, because the compiler cannot recognize
references to the stream components (e.g. cout).

<

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error

Syntax errors are also called compiler errors, compile-time errors
or compilation errors, because the compiler detects them during the
compilation phase. You will be unable to execute your program
until you correct all the syntax errors in it. As you will see, some
compilation errors are not syntax errors.

© 2006 Pearson Education, Inc. All rights reserved.

Basics of C Programming

Steps in Learning English Language:

Alphabets Sentences Paragraph

Steps in Learning C Language:

Alphabets Constanis

Instructions C Program

Numbers , Variables

Special Symbols Keywords

P www.ecti.co.in E"Vl’lon

Compoter Training Infihte

© 2006 Pearson Education, Inc. All rights reserved.

Introduction to C++

Character Set in C++

* The character set are set of words, digits, symbols
and operators that are valid in C++.

* There are four types of Character Set:-

Character Set in C++

16

2.

Letters
Digits

Special Characters

White Spaces

Uppercase A-Z
Lowercase a-z

All digits 0-9

All Symbols: ,.::?"'" 1|
\/~ $%HEE"" -+ <>
(){ }[]

Blank space, Horizontal
tab Carriage return,
line, Form feed

Lecture Slides By Adil Aslam

© 2006 Pearson Education, Inc. All rights reserved.

Tokens: The smallest individual units of a program acalled
tokens.

1. Constants

2. Variables

3. Keywords

4. Data Types

A C++ program is written using these tokens, white
spaces , and the syntax of the language.

© 2006 Pearson Education, Inc. All rights reserved.

Constants , Identifiers and Keywefds

The alphabets , numbers and special symbols when properly combined
form constants , identifiers and keywords.

Constant: a constant 1s a quantity that does not change. This can be
stored at a location in memory of computer.

Variable(identifiers) : 1s considered as a name given to the location
in memory where this constant is stored. Naturally the contents of
the variable can change. There are fundamental requirement of any
language. Each language has i1ts own rules for naming these

ldentlﬁers © 2006 Pearson Education, Inc. All rights reserved.

Following are the rules for naming identifiers:

Only alphabetic characters digits and underscores are permitted.
The name cannot start with a digit.

Uppercase and Lowercase letters are distinct
A declared keyword cannot be used as a variable name.

==

For Example:
3X+Y=20

© 2006 Pearson Education, Inc. All rights reserved.

Keywords

Keywords implement specific C++ language features.
They are explicitly reserved identifiers and cannot be
used as names for the program variables or other
user defined program elements.

© 2006 Pearson Education, Inc. All rights reserved.

C++ Data Types

4

User-defined type

Structure
Union

Class
enumeration

Integral type

. 4

int | ichar
1

Built-in type

void

Function
Pointer
reference

Floating type

I float double
i
% »

© 2006 Pearson Education, Inc. All rights reserved.

Data Type

Data Type : type of data to be stored in a variable

Primitive data type (built-in data type): provided as an integral part of the
language

Integer type

Real type

int val;

Primitive Data Type

Primitive Type

Data type Memory size (byte)

N char 1 -128 ~ +127
T
E short O% more 32768 ~ +32767
G
E int 4 -2147483648 ~ +2147483647
R

long 4 -2147483648 ~ +2147483647
R float 4 3.4x10737 ~ 3.4x10*38

or mare big
E double 8 175107307 ~ 1.7%1(*308
A
L long double 8
n,

ne. Al Tyrits IBSGIVUd.

Primitive Data Type

Why do we need to define the type of data?

1. Efficient use of memory space

2. Data loss can happen when store big data into small
memory space

Primitive Data Type

sizeof operator

Return memory size of operand in byte

Need () when the operand is data type
Otherwise () 1s optional

#include <iostream>
using namespace std;
int main(void)
{
int val=10;
cout << sizeof val << endl;// print memory size
cout << sizeof(int) << endl;// print int data type

return 0;

Primitive Data Type

Criteria of selection of data type

Real type data
Accuracy
‘double’ is common

Data type

float . 6" below decimal point

double 15" below decimal point

long double More accurate than double

Primitive Data Type

Example

#include <iostream>
#include <iomanip>
using namespace std;
int main(void)
{
double radius;
double area;
cout << "Input radius of circle" << endl;
cin >> radius;
area = radius * radius * 3.1415;
cout << area;
return 0;

Primitive Data Type

unsigned: the range of data is changed

Positive integer only
Can not be used in real data type

char(signed char) 1 -128 ~ +127

unsigned char 1 0~ (127 + 128)

-32768 ~ +32767

0 ~ (32767 + 32768)
-2147483648 ~ +2147483647

0 ~ (2147483647 + 2147483648)
-2147483648 ~ +2147483647

0 ~ (2147483647 + 2147483648)

short(signed short)

unsigned short

int(signed int)

unsigned int

long(signed long)

P I I T (R I G I I V)

unsigned long

Primitive Data Type

How to express letter (including characters, notations, ...) inside
computer?

ASCII (American Standard Code for Information Interchange)
code was born for expressing letters.

Defined by ANSI (American National Standard Institute)
The standard of letter expression by computer
Ex) letter ‘A’ [1 65, letter ‘B’ [1 66

Primitive Data Type

Range of ASCII code

0 ~ 127, [J possible using ‘char’ type
Declare ‘char’

Expression of letters

(quOtatlon mark) Change ‘A’ into 65 and store it.

v |
Dec;lare sto,r,e letter A into char Ch] — .A.
variable ch1

A

Refer ASCII code table

© 2006 Pearson Education,
Inc. All rights reserved.

Primitive Data Type

Example

#include <iostream>
using namespace std;
int main(void)
{
char ch1="A";
char ch2=65;

cout << ch1 <<endl << ch2 << endl;
cout << (int)ch1 << endl << (int)ch2 <<endl;

return 0;

Primitive Data Type

ASCII code

Dec Hx©Oct Char Dec Hx Oct Html Chr [Dec Hx Oct Himl Chr| Dec Hx Oct Html Chr
0 0 000 NUL (null) 32 20 040 Space| 64 40 100 &«#64; [96 60 140 `
1 1 001 S0H (start of heading) 33 21 041 ! ! 65 41 101 &«#65; & | 97 61 141 &«#97; a
2 2 002 5TX (start of text) 34 22 04z &«#34; " 66 42 102 &«#66; B 98 62 142 &«#98; b
3 3 003 ETX (end of text) 35 23 043 # # 67 43 103 «#67; C 99 63 143 &«#99; C
4 4 004 EOT (end of transmission) 36 24 044 &«#$36; § 65 44 104 «#68; D |100 64 144 &#l00; d
5 5 005 ENQ (encuiry) 37 25 045 «#37; % 69 45 105 «#69; E |101 65 145 &#l01; &
6 6 006 ACK (acknowledge) 38 26 046 & & 70 46 106 «#70; F |102 66 146 &#l02; €
7 7 007 BEL (bell) 39 27 047 &«#39; ' 71 47 107 «#71; G (103 67 147 g o
§ 8 010 E5 (backspace) 40 28 050 &«#40; | 72 43 110 H H (104 68 150 &«#104; h
9 9 011 TAE (horizontal tab) 41 29 051 «#41;) 73 49 111 &«#73; I (105 69 151 i 1
10 A 012 LF (NL line feed, new line)| 42 2A 052 &«#d42; * 74 44 112 «#74; J |106 6A 152 &#l06;]
11 B 013 ¥VT (wvertical tab) 43 2B 053 + + 75 4B 113 «#75; K |107 6B 153 k k
12 C 014 FF (NP form feed, new page)| 44 2C 054 , , 76 4C 114 «#76; L (108 6C 154 l 1
13 D 015 CR (carriage return) 45 2D 055 - - 77 4D 115 &«#77; M |109 6D 155 m n
14 E 016 50 (shift out) 46 2E 056 . . 78 4E 116 &«#78; N (110 6E 156 l0; n
15 F 017 5I (shift in) 47 2ZF 057 &«#47; / 79 4F 117 «#79; 0 (111 6F 157 lll; o
16 10 020 DLE (data link escape) 48 30 060 0 0 80 50 120 &«#80; P |112 70 160 &#ll2; p
17 11 021 DC1l (dewice control 1) 49 31 DAl 1: 1 8l 51 121 Q 0 |113 71 161 &#l13; 4
18 12 022 DCZ (dewvice control 2) 50 32 DRZ &«#50; 2 82 52 122 «#82; R (114 72 162 l4; ¢
19 13 023 DC3 (dewvice control 3) 51 33 063 3 3 83 53 123 «#837 5 (115 73 163 s s
20 14 024 DC4 (dewvice control 4) 52 34 064 4: 4 54 54 124 «#584; T |116 74 164 &#ll6; ©
21 15 025 NAK (negative acknowledge) 53 35 D65 5 5 85 55 125 &«#385; U |117 75 165 &#ll7; u
22 16 026 3YN (synchronous idle) 54 36 066 6 6 86 56 126 &«#86; V (118 76 166 l8; v
23 17 027 ETE (end of trans. block) 55 37 067 7 7 87 57 127 &«#87:; W (119 77 167 w w
24 18 030 CAN (cancel) 56 38 070 8 8 88 58 130 &«#88; X |120 78 170 &#l20; X
25 19 031 EM (end of medium) 57 39 071 «#57: 9 89 59 131 &«#89: ¥ |121 79 171 &#l2l: ¥
26 1A 032 SUE (substitute) 58 34 072 : : 90 54 132 «#90; Z (122 74 172 &«#l22; z
27 1B 033 ESC (escape) 59 3B 073 &«#59: ; 91 5B 133 &«#91; [|123 7B 173 { {
28 1C 034 F5 (file separator) 60 3C 074 < < 92 5C 134 &«#92; \ (124 7C 174 «#l24; |
29 1D 035 G5 (group separator) 61 3D 075 l; = 93 5D 135]] [125 7D 175 } }
30 1E 036 RS (record separator) 62 3E 076 > > 94 S5E 136 &«#94; ~ |126 7E 176 &#l26; ~
31 1F 037 US ({(unit separator) 63 3F 077 &#$63; ? 95 S5F 137 &«#95; _ (127 7F 177 «#127; DEL

Source: www.LookupTables.com

Symbolic Constant

Make ‘variable’ to ‘constant’

#include <iostream>

using namespace std;

int main(void)

{
const int MAX = 100;
const double Pl = 3.1415;
return 0;

28

Another C++ Program: Adding Integers

e Variables

— Location in memory where value can be stored
— Common data types (fundamental, primitive or built-in)
* int - integer numbers
* char - characters
e double - floating point numbers
— Declare variables with name and data type before use
e int integer1;
e int integer2;
e int sum;

© 2006 Pearson Educat

29

Another C++ Program: Adding Integers
(Cont.)

e Variables (Cont.)

— Can declare several variables of same type in one
declaration

e Comma-separated list
e int integer1, integer2, sum;
— Variable names

 Valid identifier
— Series of characters (letters, digits, underscores)
— Cannot begin with digit
— Case sensitive (upper and lower case letter) _

* Keywords

© 2006 Pearson Educat

1 // Fig. 2.5 fig02_05. cpp

2 // Addition program that displays the sumof two nunbers.

3 #include <iostreamr // allows programto performinput and output

4

5 // function mai n begins program execution

6 int main()

7 Declare integer variables

8 // variabl e decl arati

9 int nunber1, teger to add

10 i nt nunber 2; econd i nteg{]

i ey A—— Use stream extraction

12 operator with standard input

13 std::cout << "Enfer first in{ stream to obtain user input

14 std::cin >>"nunber1; // read Tirst Tnteger fromuser 1nto nunber

15

16 std:: cout << "Enter second integer: "; // pronpt user for data

17 std::cin >> nunber2; // read second integer fromuser into nunber2

18

19 sum= nunber1 + nunber2; // add the nunbers; store result in sum .

58 Stream manipulator
21 std::cout << "Sumis " << sum=<< std:: endl; di spl ay sum end |ine std: :endl outputs a
22 newline, then “flushes output
23 return 0; // indicate i successful | y bufter”

24

25} // end function main N (Concatenating, chaining or

fig02_05.cpp

Efiter i fst ilnteget: 45 cascading stream insertion output (1 of 1)
Enter second integer: 72 operations
Sumis 117

© 2006 Pearson Education,
Inc. All rights reserved.

31

Good Programming Practice

Place a space after each comma (,) to make
programs more readable.

© 2006 Pearson Educat

32

Some programmers prefer to declare each
variable on a separate line. This format allows
for easy insertion of a descriptive comment next

to each declaration.

© 2006 Pearson Educa

33

C++ allows identifiers of any length, but your C++
implementation may impose some restrictions on
the length of identifiers. Use identifiers of 31
characters or fewer to ensure portability.

© 2006 Pearson Educat

34

Choosing meaningful identifiers helps make a
program self-documenting—a person can
understand the program simply by reading it
rather than having to refer to manuals or
comments.

© 2006 Pearson Educat

35

Always place a blank line between a declaration
and adjacent executable statements. This makes
the declarations stand out in the program and
contributes to program clarity.

© 2006 Pearson Educat

36

Another C++ Program: Adding Integers
(Cont.) -

* Input stream object

— std: :cinfrom <iostream>
e Usually connected to keyboard

e Stream extraction operator >>
— Waits for user to input value, press Enter (Return) key
— Stores value in variable to right of operator
e Converts value to variable data type
 Example
— std::cin >> number1;
* Reads an integer typed at the keyboard
* Stores the integer in variable number1

<

© 2006 Pearson Education, Inc. All rights reserved.

37

Another C++ Program: Adding Integers
(Cont.)

e Assignment operator =
— Assigns value on left to variable on right
— Binary operator (two operands)

— Example:

* sum = variable1 + variable2;
— Add the values of variable1 and variable2
— Store result in sum

e Stream manipulator std: :endl

— Outputs a newline
— Flushes the output buffer

© 2006 Pearson Educa

38

Another C++ Program: Adding Integers
(Cont.)

e Concatenating stream insertion operations
— Use multiple stream insertion operators in a single statement
e Stream insertion operation knows how to output each type of data
— Also called chaining or cascading
— Example

e std::cout << "Sum is
<< std::endl:;

— Outputs "Sum 1s “
— Then, outputs sum of number1 and number?2
— Then, outputs newline and flushes output buffer

<< number1 + number?2

<

© 2006 Pearson Education, Inc. All rights reserved.

Memory Concept

e Variable names

— Correspond to actual locations in computer's memory
e Every variable has name, type, size and value

— When new value placed into variable, overwrites old value
 Writing to memory is destructive

— Reading variables from memory nondestructive

— Example
* sum = number1 + number2;

— Value of sum is overwritten
— Values of number1 and number2 remain intact

<

© 2006 Pearson Education, Inc. All rights reserved.

numberl 45

Fig. 2.6 | Memory location showing the name and value of variable number1.

© 2006 Pearson Education, Inc. All rights reserved.

numberl 45

number?2 72

Fig. 2.7 | Memory locations after storing values for number1 and number 2.

© 2006 Pearson Education, Inc. All rights reserved.

numberl 45
number2 72

sum 117

Fig. 2.8 | Memory locations after calculating and storing the sum of number1 and
number2.

© 2006 Pearson Education, Inc. All rights reserved.

Arithmetic

e Arithmetic operators
*

e Multiplication
-/
e Division
e Integer division truncates remainder
— 7 [/ 5evaluatesto 1
- %
 Modulus operator returns remainder
— 7 % 5 evaluates to 2

© 2006 Pearson |

44

Attempting to use the modulus operator (%) with
non integer operands is a compilation error.

© 2006 Pearson Educat

Arithmetic (Cont.)

e Straight-line form

— Required for arithmetic expressions in C++
— All constants, variables and operators appear in a straight
line
e Grouping subexpressions
— Parentheses are used in C++ expressions to group
subexpressions
 Same manner as in algebraic expressions
— Example
ca* (b+c)
— Multiple a times the quantityb + ¢

<

© 2006 Pearson Education, Inc. All rights reserved.

C++ operation

Addition
Subtraction

Multiplication
Division

Modulus

C++ arithmetic Algebraic C++
operator expression expression
+ f+7 f +7
= p_c p = (e
* bmorb m b * m
X
/ x/yor— orx=y x/y
y
% rmod s r s

Fig. 2.9 | Arithmetic operators.

© 2006 Pearson Educat

46

* Rules of operator precedence

— Operators in parentheses evaluated first
* Nested/embedded parentheses
— Operators in innermost pair first
— Multiplication, division, modulus applied next
e Operators applied from left to right
— Addition, subtraction applied last
e Operators applied from left to right

48

Some programming languages use operators **
or N to represent exponentiation. C++ does not
support these exponentiation operators; using
them for exponentiation results in errors.

Use pow(A, B) = A*B function in C++

© 2006 Pearson Educa

2 * 5% 5 4+ 3 %5 + 7; ({leftmost multiplication)
2 *5 1is 10

‘—l

Step 2. y =10 * 5 + 3 * 5 + 7; (Leftmost multiplication)
10 * 5 is 50
Step 3. y =50+ 3*5+ 7; (Multiplication before addition)
3 * 5 1is 15
Step 4. y =50+ 15 + 7; (Leftmost addition)
50 + 15 is 65
|
Y
Step S. y =65+ 7; (Last addition)
65 + 7 is 72

+—l

Step 6. L= T (Last operation—place 72 iny)

Step 1. 4

Fig. 2.11 | Order in which a second-degree polynomial is evaluated.

© 2006 Pearson Education, Inc. All rights reserved.

50

Decision Making: Equality and Relational
Operators

e Condition

— Expression can be either true or false

— Can be formed using equality or relational operators
* if statement

— If condition is true, body of the if statement executes

— If condition is false, body of the 1f statement does not
execute

© 2006 Pearson Educat

51

Standard algebraic C++ equality Sample Meaning of

C++ condition

equality or relational or relational C++
operator operator condition

Relational operators

> > X >y X is greater than y

< < X <Yy X is less than y

2 >= X >= X is greater than or equal toy
< <= X <=y X is less than or equal to y
Equality operators

= == ==Yy X is equal to y

= =y X is not equal to y

Fig. 2.12 | Equality and relational operators.

© 2006 Pearson Educat

52

A syntax error will occur if any of the operators
==, |=, >= and <= appears with spaces between its
pair of symbols.

© 2006 Pearson Educat

53

Reversing the order of the pair of symbols in any
of the operators !=, >= and <= (by writing them
as =!, => and =<, respectively) is normally a
syntax error. In some cases, writing != as =! will
not be a syntax error, but almost certainly will be
a logic error that has an effect at execution time.
(cont...)

© 2006 Pearson Educat

w0 NS bW N -

- -
- 0

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

// Fig. 2.13: fig02_13. cpp
// Conparing integers using i f statenents,
// and equality operators.

rel ati onal

operators

#i ncl ude <iostream // all ows programto performinput and output

usi ng std:: cout; ogram uses cout
using std::cin;

using std:: endl;

m uses endl

using declarations eliminate
need for std: : prefix

// function mein begins progra

Declare variables

int main()

{
int nunber1; i Can write cout and cin
int nunber2; without std: : prefix

cout
cin >> nunber1 >> nunber2; // read

nter two i ntegers to conpare:

if (nunber1 == nunber2)

cout << nunber1 << = << nu

if (nunber1 != nunber2)

cout << nunber1 <<

if (nunber1 < nunber?2)

cout << nunber1 << " <« << nu

if (nunber1 > nunber?2)
cout << nunber1 << " > "

i nteg

2 << e

= " << nunber2 << endl; ‘/////

<< en

1

54

Outline

fig02_13.cpp

(1 0f2)

if statement compar

of numberl W

valneg are

If condition is true (i.e.,

1 if statement compares values

qual), execute this

of numberl and
test for inM

If condition is true (i.e.,
values are not equal), execute
this statement

Compares two numbers using
relational operator < and >

<< nunber2 << endl;

31 i f (nunber1 <= nunber2)

52 COUMES =S nunben B ue s e = jnu << _endl Compares two numbers using
33 :
relational operators <= and >=
34 i f (nunber1 >= nunber2) p
35 cout << nunber1 << " >= " << nunber2 << endl;
36
37 return 0; // indicate that program ended successfully
38

39} // end function main

Enter two integers to conpare: 3 7
31=

Enter two integers to conpare: 22 12
22 1= 12
22 > 12
22 >= 12

~ s

_ 55
Outline

fig02_13.cpp
(2 of 2)

fig02_13.cpp
output (1 of 3)

(2 of 3)

(3 of 3)

56

It is a syntax error to split an identifier by
inserting white-space characters (e.g., writing
main as ma in).

© 2006 Pearson Educat

