
Колебания математического и пружинного маятников.

ПОВТОРЕНИЕ

На рисунке показан график зависимости перемещения колеблющегося тела от времени.

1) По графику определите амплитуду, период, частоту и циклическую частоту колеблющегося тела. Запишите уравнение зависимости х (t). [5 б]

$$A = 0.3 \text{ cm} = 3 \cdot 10^{-3} \text{ m}$$
 $T = 2 \text{ c}$

$$\nu = \frac{1}{\mathrm{T}} = \frac{1}{2\mathrm{c}} = 0,5$$
 Гц

$$\omega = \frac{2\pi}{T} = \frac{2\pi}{2c} = \pi \frac{pag}{c}$$

$$x = ACos(\omega t + \varphi_0)$$

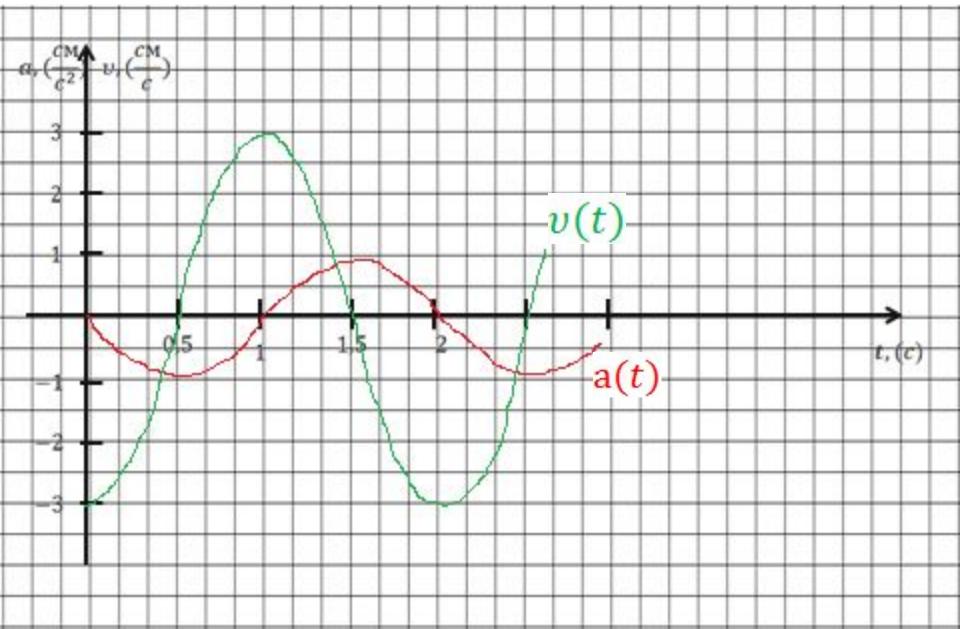
$$x = 3 \cdot 10^{-3} Cos\pi t, (M)$$

2) Напишите уравнение зависимости скорости от времени колеблющегося тела: [1 б]

$$v_m = A \cdot \omega = 3 \cdot 10^{-3} \cdot 3{,}14 = 9{,}42 \cdot 10^{-3} \left(\frac{M}{c}\right)$$

$$v = -9.42 \cdot 10^{-3} Sin\pi t, \left(\frac{M}{c}\right)$$

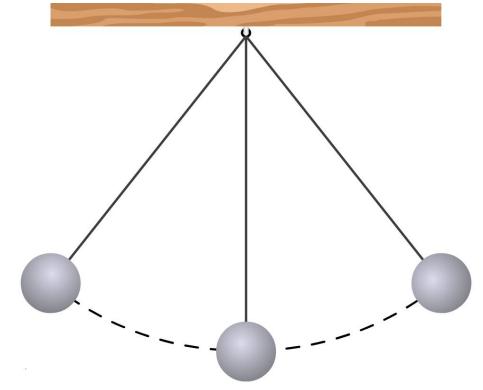
3) Напишите уравнение зависимости ускорения от времени колеблющегося тела: [1 б]

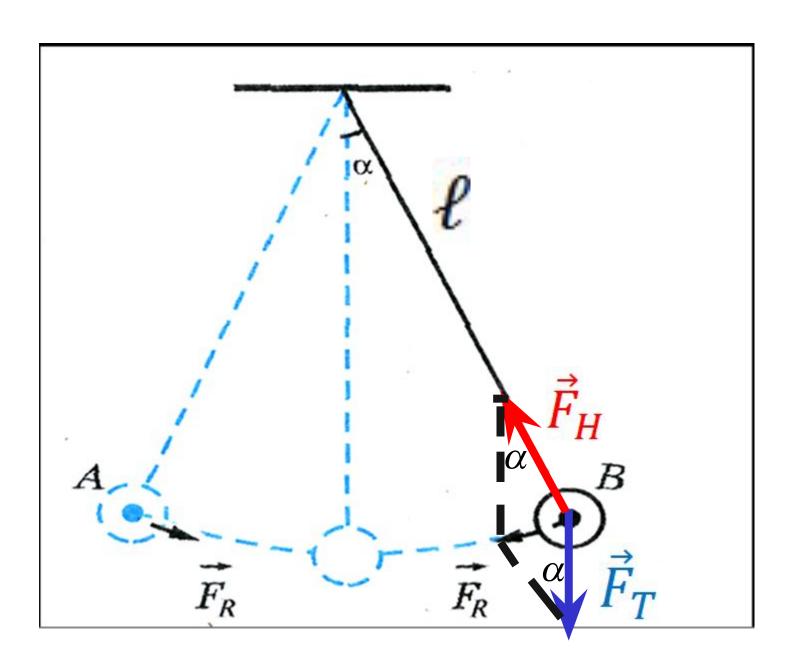

$$a_m = A \cdot \omega^2 \approx 3 \cdot 10^{-3} \cdot 10 \approx 3 \cdot 10^{-2} \left(\frac{M}{c^2}\right)$$

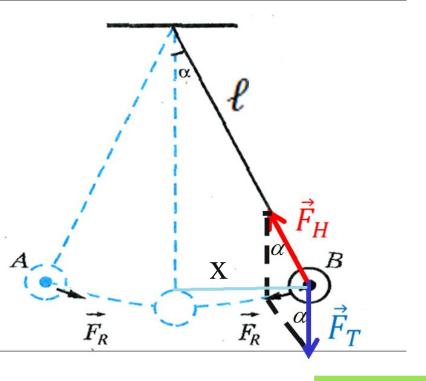
$$a = -3 \cdot 10^{-2} Cos\pi t, (\frac{M}{c^2})$$

4)	Π	[oc	тр	ой	ге	гра	афі	ИКИ	1 38	ави	СИ	MO	CT	ис	КО	poq	СТИ	O 1	Г В	per	мен	ИЬ	И	ycı	KOp	рен	КИІ	O	B	en	1 ен	И
(на	O	ДН	ой	CV	ІСТ	ем	ек	(00	рді	ина	ат):	: [3	б <u></u>]										-								
		- 2		9) Va						- 2		9)					3	- 50		30						- 2		9				
		- 3		93 26	S.	8				- 10								- 50				8 7				- 19		8				
	Ì			93 26	6																	8 7						8				
												355								35												
		- 3		** **																		8 1						20 20		8		
	-	- 0		0						- 70		3)			8 8							4				- 0		30			3 8	
				X								20		8				- 0		20		s 7		-		- 0		X6.		8 1		
		- 10		9						74		9)						- 38		90						- 94						
-	- 43			X.	6.	s :						20		s :				- 20		20		s 7		- 25	-			XX		8 7		
		- 30		9		ļ .	:			- %		9			: 3			- 9		9		÷	:			- 9		9			: :	
-	- 65			X0.		8		1 10	- 41			20		s :		2 2		- 0		20.		8 7		- 25	-			XX.		8 7		
-				9		ş .	:			- %		9					-			9		÷	:		-	- 2		9			::	
-	- 63			(c)								70		8 1				- 0		0		s - 1		- 20	- 43			XX			-	
-		- 8		8		9 :	:			74		9					-			9		÷ - :	:			- 9		9		-	::	-
	- 43			(c)								70						- 0		0			-		- 13			XX.			-	
	-	- 2		9		į.	:			74		9)			: 3			- 18		9)		ş	:			- 2		9)			::	:
	- 0			<u> </u>	65-	8)				- 0		0		5 7		2 2		- 0		0		S 7	-	- 2		- 0		V	0.0	8 - 1	-	

4) Постройте графики зависимости скорости от времени и ускорения от времени (на одной системе координат): [3 б] 0,5 t,(c)


4) Постройте графики зависимости скорости от времени и ускорения от времени (на одной системе координат):


Математический маятник


Математическим маятником

называется колебательная система, состоящая из тяжелого маленького груза, подвешенного на невесомой, длинной нити.

Колебания математического маятника

$$ec{F}_R = ec{F}_T + ec{F}_H$$
 $F_R = F_T \cdot tg\alpha$
 $tg\alpha \approx Sin\alpha = rac{x}{\ell}$

$$F_R = -\frac{mgx}{\ell}$$

Равнодействующая сил, под действием которой математический маятник совершает гармонические колебания, пропорциональна смещению и противоположна ей по знаку.

От чего зависит и не зависит период математического маятника?

Посмотрите видеоурок по ссылке и ответьте на этот вопрос:

https://www.youtube.com/watch?v=1GZduDDJgSQ

Физическая Зависит или не зависит период колебаний математического величина маятника, Т Амплитуда колебаний, А Масса груза, т Длина нити, ℓ

Ускорение

свободного

падения, д

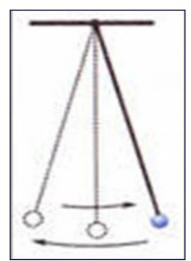
Выполните самопроверку

Физическая	Зависит или не зависит период
величина	колебаний математического
	маятника, Т
Амплитуда	Не зависит
колебаний, А	
Масса груза, т	Не зависит
Длина нити, ℓ	Зависит:
	с увеличением длины нити,
	период увеличивается
	$T \sim \sqrt{\ell}$

Физическая
величина

Зависит или не зависит период колебаний математического маятника, Т

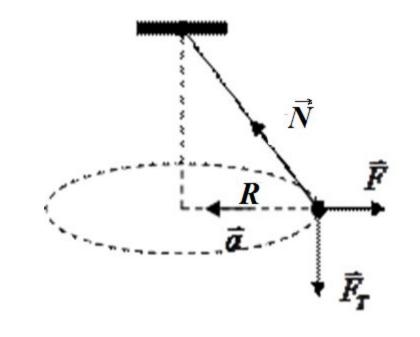
Ускорение свободного падения, g


Зависит:

с уменьшением ускорения свободного падения, период увеличивается

$$T \sim \frac{1}{\sqrt{g}}$$

Период математического маятника:

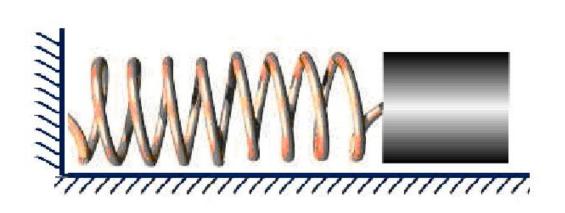

$$T=2\pi\sqrt{\frac{\ell}{g}}$$

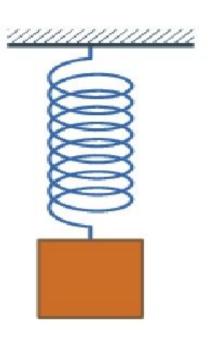
Период «конического» маятника:

$$T = \frac{2\pi R}{\upsilon}$$

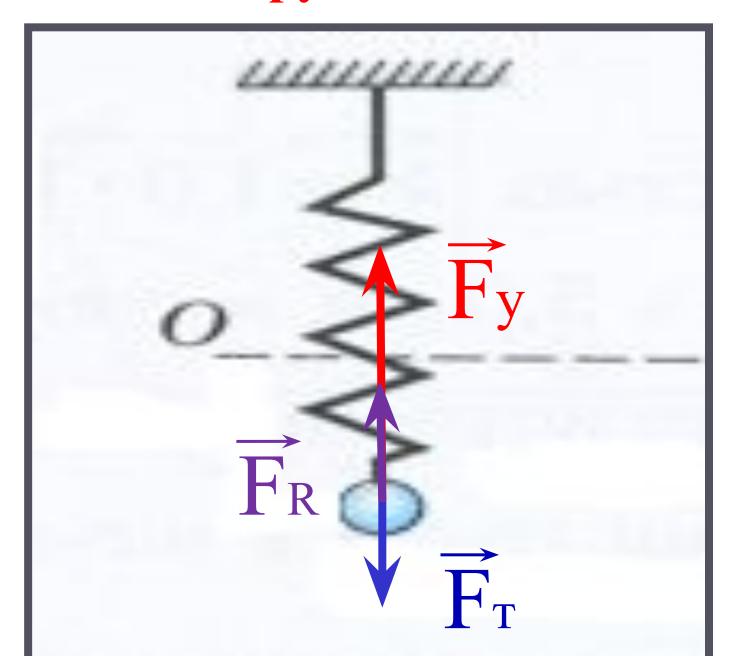
$$F_R = \frac{m \cdot \upsilon^2}{R}$$

Частота математического маятника:


$$v = \frac{1}{T} = \frac{1}{2\pi} \cdot \sqrt{\frac{g}{\ell}}$$


Циклическая частота математического маятника:

$$\omega = \frac{2\pi}{T} = \frac{2\pi}{2\pi} \cdot \sqrt{\frac{g}{\ell}} = \sqrt{\frac{g}{\ell}}$$


Пружинный маятник

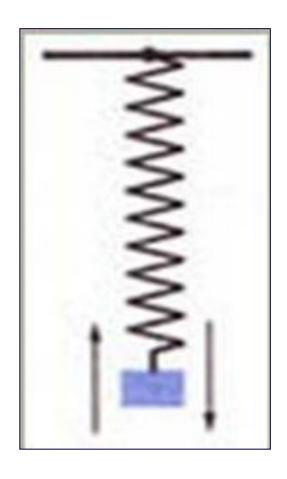
Пружинным маятником называется колебательная система, состоящая из груза, подвешенного на пружине.

Колебания пружинного маятника

От чего зависит и не зависит период пружинного маятника?

Посмотрите видеоурок по ссылке и ответьте на этот вопрос:

https://youtu.be/fYULhXS2O7k

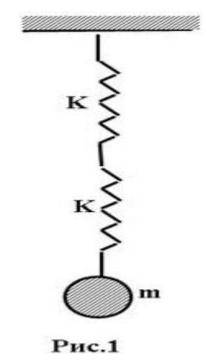

Физическая	Зависит или не зависит период
величина	колебаний пружинного
	маятника, Т
Амплитуда	
колебаний, А	
Масса груза, т	
Жесткость	
пружины, k	

Выполните самопроверку

Физическая величина	Период колебаний пружинного маятника, Т
Амплитуда колебаний, А	Не зависит
Масса груза, т	Зависит: с увеличением массы тела, период увеличивается $T \sim \sqrt{m}$
Жесткость	Зависит:
пружины, k	с увеличением жесткости
	пружины, период уменьшается
	$T\!\sim\!rac{1}{\sqrt{k}}$

Период пружинного маятника:

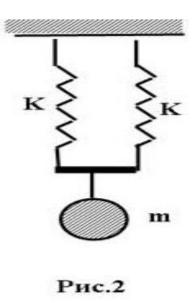
$$T = 2\pi \sqrt{\frac{m}{k}}$$


Частота пружинного маятника:

$$v = \frac{1}{T} = \frac{1}{2\pi \sqrt{\frac{m}{k}}} = \frac{1}{2\pi} \cdot \sqrt{\frac{k}{m}}$$

Циклическая частота пружинного маятника:

$$\omega = \frac{2\pi}{T} = \frac{2\pi}{2\pi\sqrt{\frac{m}{k}}} = \sqrt{\frac{k}{m}}$$


Последовательное соединение пружин

$$k_{o \delta u i} = \frac{k}{2}$$

$$T = 2\pi \sqrt{\frac{2m}{k}}$$

Параллельное соединение пружин

$$k_{o \delta u i} = 2k$$

$$T = 2\pi \sqrt{\frac{m}{2k}}$$

1. Периоды колебаний двух математических маятников относятся как 3:2. Во сколько раз первый маятник длиннее второго?

$$\frac{l_1}{l_2} = ?$$

$$\frac{T_1}{T_2} = \frac{3}{2}$$

Решение:

Периоды колебаний каждого математического маятника:

$$T_{1} = 2\pi \sqrt{\frac{l_{1}}{g}} \quad T_{2} = 2\pi \sqrt{\frac{l_{2}}{g}}$$

$$\frac{T_{1}}{T_{2}} = \frac{3}{2} = \frac{2\pi}{2\pi} \sqrt{\frac{l_{1} \cdot g}{g \cdot l_{2}}} = \sqrt{\frac{l_{1}}{l_{2}}}$$

$$\frac{T_{1}^{2}}{T_{2}^{2}} = \frac{9}{4} = \frac{l_{1}}{l_{2}} = 2,25$$

Ответ: первый маятник длиннее второго в 2,25 раза

2. Как изменится период колебаний груза на пружине, если массу и амплитуду колебаний увеличить на 800%, а жесткость пружины увеличить на 300%?

$$\frac{T_2}{T_1} - ?$$

$$X_{\text{max } 2} = 9X_{\text{max } 1}$$

$$m_2 = 9m_1$$

$$k_2 = 4k_1$$

Решение:

Периоды колебаний каждого маятника:

$$T_1 = 2\pi \sqrt{\frac{m_1}{k_1}} \quad T_2 = 2\pi \sqrt{\frac{m_2}{k_2}}$$

От амплитуды период колебаний не зависит.

$$\frac{T_2}{T_1} = \frac{2\pi}{2\pi} \sqrt{\frac{m_2 \cdot k_1}{k_2 \cdot m_1}} = \sqrt{\frac{9m_1 \cdot k_1}{4k_1 \cdot m_1}} = 1,5$$

$$\frac{T_2}{T_1} = 150\%$$

Ответ: Период увеличится на 50 %