

ОБЩАЯ ФАРМАКОЛОГИЯ

ОБЩАЯ ФАРМАКОЛОГИЯ

ФАРМАКОКИНЕТИКА

раздел изучающий путь ЛС в организме: поступление, распределение, депонирование, метаболизм ЛС и выведение из организма

ФАРМАКОДИНАМИКА

раздел изучающий локализацию эффекта ЛС: точки приложения, механизмы действия ЛС и их фармакологические эффекты

Фармакокинетика

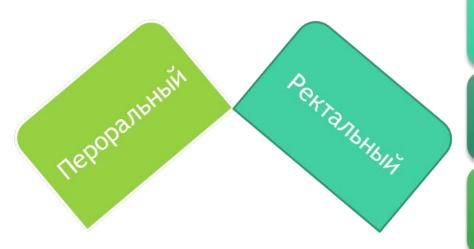
От греч. *Pharmakon* - лекарство,

kinetikos -движущий) - раздел фармакологии, изуч<mark>ающий</mark> процессы

- высвобождение,
- всасывание (абсорбция)
- распределение,
- метаболизм,
- выделение лекарственных средств.

Пути введения лекарственных веществ в организм делят на две основные группы:

энтеральные (ЖКТ)


парентеральные

Инъекции

Ингаляции

Сублингвальное введение

Нанесение лекарств на кожу и слизистые оболочки

Пероральный способ введения

Достоинства

естественность введения препарата в организм; удобство и достаточная точность дозирования;

Недостатки

трудность применения этого способа в педиатрии;

влияние цвета, вкуса, запаха лекарств;

влияние пищеварительных ферментов и составных частей пищи на лекарственные вещества;

неэффективность назначения большого количества препаратов ;

зависимость скорости всасывания от наполнения пищеварительного тракта;

Ректальный способ введения

Достоинства

обеспечивает поступление активных ингредиентов большой частью в большой круг кровообращения, минуя печень;

позволяет снизить побочное действие за счет исключения длительного и непосредственного контакта лекарственного вещества со слизистой оболочкой желудочно-кишечного тракта;

Недостатки

выраженные индивидуальные колебания в скорости и полноте всасывания препаратов;

психологические затруднения и неудобства применения

Инъекционный способ введения

Достоинства

быстрота наступления терапевтического эффекта;

отсутствие на пути всасывания препаратов ферментных систем;

отсутствие контакта препарата с кишечной микрофлорой;

Парентерально лекарственные вещества целесообразно вводить при невозможности энтерального применения при резком нарушении кишечного всасывания.

Пути введения ЛС

ЭНТЕРАЛЬНЫЕ

- пероральный (через рот)
- сублингвальный (под язык)
- буккальный (за щеку)
- ректальный (через прямую кишку)
- зондовый (через зонд в желудок, в duodenum)

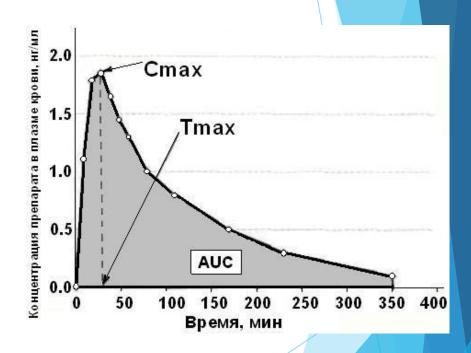
ПАРЕНТЕРАЛЬНЫЕ

- без нарушения целостности кожных покровов: накожный (ТТС), на слизистые оболочки, Ингаляционный.
- с нарушением целостности кожных покровов (инъекции).

Пути введения ЛС

Трансдермальная терапевтическая система (ТТС) — дозированная мягкая лекарственная форма для наружного применения в форме пластырей или плёнок, замедленно высвобождающая лекарственное средство.

Высвобождение из лекарственной формы


Скорость Раствор Ταδλετκα Таблетка с оболочкой Таблетка с контролируемым

высвобождением

Биодоступность

От пути введения лекарственного средства существенно зависит его биологическая доступность.

Показатель, характеризующий полноту и скорость всасывания ЛВ в кровь.

Фармацевтические факторы, влияющие на биодоступность лекарств

Химическая модификация субстанции Физико-химические свойства субстанции

Вспомогательные вещества

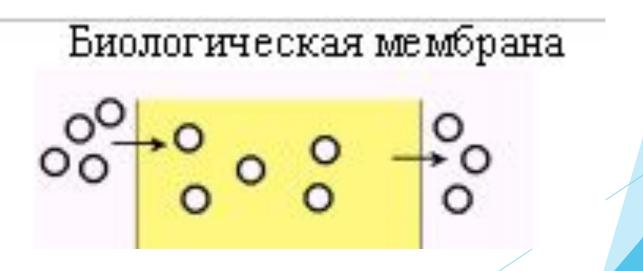
БИОДОСТУПНОСТЬ

Тип упаковки (стекло, пластмасса, бумага)

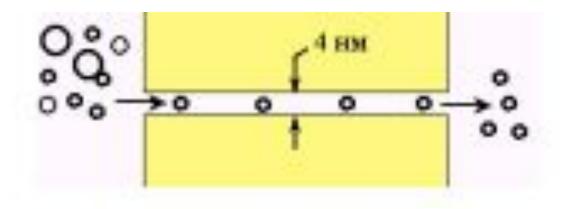
Условия хранения

Технологический процесс

Лекарственные препараты называются биоэквивалентными в том случае, когда их одинаковые дозы в одной и той же лекарственной форме произведенные разными фирмами производителями, обеспечивают одинаковую концентрацию действующего вещества в крови и тканях организма.


Всасывание (абсорбция – от лат. absorbeo – всасываю) – процесс поступления лекарственного вещества из места введения в кровеносную и/или лимфатическую систему через биологические мембраны.

Всасывание осуществляется по нескольким механизмам:

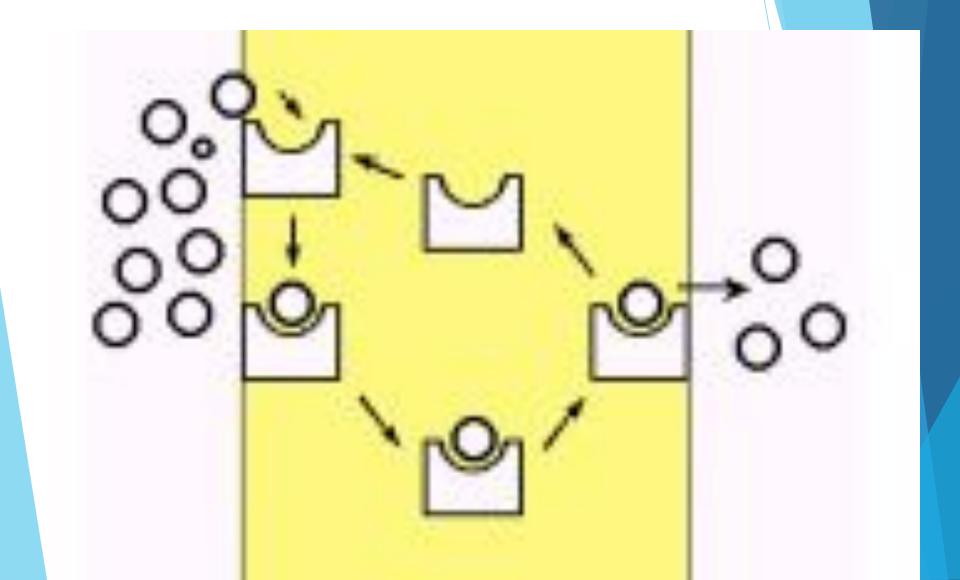


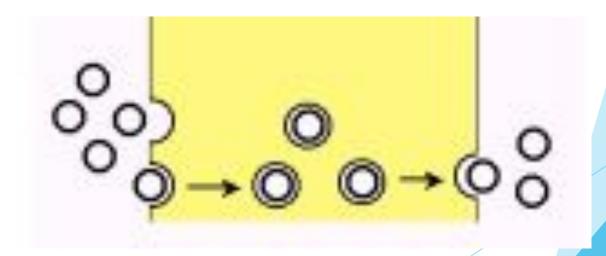
1. Пассивная и облегченная диффузия - транспорт через биомембраны в направлении градиента концентрации (из зоны с большей концентрации в зону с меньшей концентрацией) до тех пор, пока по обе стороны мембраны концентрации не выровняются. Этот процесс не нуждается в энергии.

Облегченные транспорт - белки-переносчики, Р-гликопротеины (глюкоза, железо, кальций)

Фильтрация проникновение лекарственных веществ через водные поры и через МЕЖКЛЕТОЧНЫЕ ПРОМЕЖУТКИ (2 нм) в стенке кровеносных сосудов и в мембранах клеток.

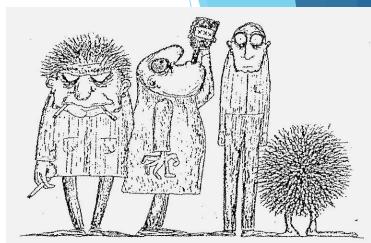
Биологические (гистогематические) барьеры - это стенки капилляров.


Они играют существенную роль в распределении лекарственных веществ.


«забарьерные» ткани:

мозг, плацента, половые железы, глаза, щитовидная железа.

Активный транспорт участие транспортных систем клеточных мембран, которые связываются с молекулами веществ и переносят их через мембрану.



Пиноцитоз (от греч. *pino* – пью). Частицы веществ, содержащие крупные молекулы или агрегаты молекул, соприкасаются с наружной поверхностью мембраны, затем окружаются ею с образованием пузырька, погружающегося внутрь клетки. Путем пиноцитоза осуществляется транспорт в клетку макромолекул.

Факторы, влияющие на процесс всасывания

- возраст, пол, беременность,
- внешние факторы (экология),
- генетически детерминированные индивидуальные особенности организма,
- циркадные (суточные), сезонные (времена года) и другие биоритмы,
- патология пищеварительной системы,
- возможное взаимное влияние лекарственных веществ и продуктов питания.

ТРАНСПОРТ, РАСПРЕДЕЛЕНИЕ, ДЕПОНИРОВАНИЕ ЛВ

После всасывания лекарственных веществ в кровеносную систему они распределяются во всем объеме крови, составляющем около 7% массы тела (в среднем 5 литров), разносятся по всему организму и попадают в клетки органов и тканей.

Лекарственные вещества циркулируют в крови либо в свободной форме, либо в форме, связанной с белками плазмы (в основном с альбуминами).

Депонирование ЛВ

Это избирательное накопление ЛС в организме.

Значение депонирования: положительное (можно добиваться накопления ЛС в ткани-мишени при использовании относительно низких доз - остеомиелит - тетрациклин); отрицательное (депонирование может обусловить развитие локального токсического эффекта даже при небольших дозировках).

Метаболизм

Метаболизм (или биотрансформация) ЛС иногда в литературе рассматривают как метаболизм ксенобиотиков (т.е. чужеродных веществ).

Наиболее важные реакции биотрансформации осуществляются с участием монооксигеназной

системы Печени или системы микросомального окисления.

Выведение или экскреция ЛС

 последний этап взаимодействия ЛВ с организмом. Как правило, ЛС экскретируются после биотрансформации (однако есть исключения могут экскретироваться и неметаболизированые молекулы некоторых ЛВ).

Пути выведения –

- . почки, ЖКТ,
- сальные, потовые, молочные железы,
- дыхательные пути.

Пути выведения ЛС из организма

Пути выведения	Механизмы выведения	ЛС
С мочой	Клубочковая фильтрация, активная канальцевая секреция	Большинстве ЛС в не связанной с белками форме
С жёлчью	Активный транспорт, пассивная диффузия, пиноцитоз	Дигитоксин, пенициллины, тетрациклины, стрептомицин, хинин, стрихнин, четвертичные аммониевые соединения
Через кишечник	Пассивная диффузия, жёлчная секреция без реабсорбции	Доксициклин, ионизированные органические кислоты
Со слюной	Пассивная диффузия, активный транспорт	Пеницнллииы, сульфаниламиды, салицнлаты, бензодиазепины, тиамин, этанол
Через лёгкие	Пассивная диффузия	Средства для ингаляционного наркоза, ноднды, камфора, этанол, эфирные масла
С потом	Пассивная диффузия	Некоторые сульфаниламиды, тиамин
С молоком	Пассивная диффузия, активный транспорт	Антикоагулянты, антибиотики, тиреостатики, литий, карбамазепин

Элиминация

- Это совокупность процессов биотрансформации и экскреции ЛС.
- Важнейшей количественной характеристикой элиминации является клиренс, который представляет объем плазмы крови, очищающийся от введенного лекарственного средства в единицу времени.
- Еще одной важной характеристикой элиминации является
 период полувыведения время, необходимое для
 снижения содержания ЛС в организме наполовину.
- При недостаточной элиминации ЛС (чаще всего связано с патологией органа биотрасформации - печени или экскреции почки) развивается феномен кумуляции, т.е. накопления в организме до тех пор, пока не прекратится введения ЛС с возможным развитием нежелательных, в том числе токсических эффектов ЛС.

Фармакодинамика

Фармакодинамика – воздействие лекарственного вещества на организм.

- 1. Локализация действия ЛВ.
- 2. Механизм действия.
- 3. Биологический эффект.

Виды действия лекарственных веществ

- Местное действие характеризуется развитием фармакологического эффекта непосредственно на месте применения лекарственного вещества.
- Резорбтивное действие характеризуется развитием фармакологического эффекта после всасывания (резорбции) лекарственного вещества в системный кровоток.
- Рефлекторное действие характеризуется воздействием лекарственного вещества на рефлексогенные зоны, приводящее к возникновению рефлекторных реакций.

Действие лекарственных средств зависит от:

- 1) химической природы ЛП (гидрофильность, липофильность, размер молекулы, форма молекулы, стереоизомерия, расстояние между функциональными группами)
- 2) дозы ЛП
- 3) возраста пациента (гипотетический эталон мужчина 24 года, массой тела 70 кг)
- 4) пола пациента этот фактор может обусловить различающиеся эффекты психотропных средств, алкоголя, никотина, препаратов половых гормонов)
- 5) состояния организма жаропонижающие препараты снижают только повышенную температуру
- 6) генетических особенностей организма врожденная аномальная реакция организма на ЛП идиосинкразия
- 7) сезонных и суточных ритмов (изучаются хронофармакологией анальгетики оказывают максимально выраженное действие между 13-18 час)

дозы и виды доз

- Доза это количество (или порция) ЛС, оказывающая определенный терапевтический или профилактический эффект.
- Виды доз:
- а) терапевтические
- б) токсические
- в) летальные

виды доз

- Помимо этого терапевтические дозы могут быть разовыми (pro dosi), суточными (pro die) и курсовыми.
- Для ЛС, склонных к кумуляции, дозы могут быть ударными и поддерживающими.
- Минимальная (пороговая) терапевтическая доза это наименьшее количество ЛС, еще оказывающее фармакологическое действие.
- Высшая (максимальная доза) это максимальное кол-ва
 ЛС, которое может быть введено без вреда для больного
 (эти дозы используют редко, обычно в ургентных случаях)
- Чаще всего используют средние терапевтические дозы, которые обычно составляют 1/2 - 1/3 от максимальной дозы.

Широта терапевтическо<mark>го</mark> действия

Широта терапевтического действия (ШТД) это дозовый интервал между максимальной терапевтической и минимальной токсической дозой.

!!! Чем больше ШТД, тем безопаснее применение данного ЛС.

ГЛАВНОЕ И ПОБОЧНОЕ ДЕЙСТВИЕ ЛС

- Главное (основное) действие (ради которого назначают ЛС)
- Побочное (может быть желательным или нежелательным). Побочное действие развивается по тому же молекулярно-клеточному механизму, что и главное, но на другом органном уровне.
- **Атропин** снижает секрецию желудочного сока при язвенной болезни желудка (главное) и одновременно нарушает зрение за счет подавление способности к аккомодации (единый рецепторный механизм). Это нежелательное побочное действие.
- Пропранолол (Анаприлин) снижает кислородный запрос миокарда и предотвращает приступ стенокардии (главное) и одновременно оказывает противотревожное действие (побочное желательное).

Токсическое действие

проявляется при передозировке или кумуляции ЛС, токсическое действие всегда нежелательное в отличие от побочного действия.

ИЗМЕНЕНИЯ ДЕЙСТВИЯ ЛС ПРИ ПОВТОРНОМ ВВЕДЕНИИ

- снижение
- усиление
- извращение
- формирование зависимости

Уменьшение эффекта

 привыкание или толерантность (изменение абсорбции и распределения).

 Тахифилаксия- быстрое ослабление эффекта, иногда сразу после первого введения.

Усиление эффекта

Материальная кумуляция - накопление ЛС либо его метаболитов (препараты наперстянки) в организме.

Функциональная кумуляция - накопление не самого вещества, а лишь накопление его эффектов (этиловый спирт - энцефалопатия),ЭП- заболевание невоспалительного характера,при котором в ткани головного мозга поступает недостаточное к-во крови а следовательно и кислорода.

Извращение эффекта

- Длительное применение нейролептиков иногда ведет к развитию злокачественного нейролептического синдрома (клиника схожая с некоторыми проявлениями шизофрении).
- Сюда же можно отнести сенсибилизацию иммунизация при первом введении, иммунопатологическая реакция гиперчувствительности при последующем введении.

Формирование лекарственной зависимости

патологическое стремление субъекта к постоянному или эпизодическому злоупотреблению ЛС с целью достижения психического или физического комфорта.

- Стадия психической зависимости при отмене психический дискомфорт.
- Стадия физической зависимости грубые нарушения обмена и физиологические сдвиги при отмене ЛС. Клинически может проявиться синдром абстиненции, который может привести даже к летальному исходу

Комбинированное примен<mark>ение</mark> ЛС

В зависимости от комбинации ЛС между ними могут быть:

синергизм антагонизм

Синергизм

усиление действия одного препарата другим при их совместном применении.

по типу суммации эффекта - слагаются эффекты двух ЛС (ибупрофен и парацетамол вместе снижают температуру сильнее, чем каждый из них по отдельности - причем жаропонижающее действие суммируется).

по типу потенцирования - усиление эффекта до величины большей, чем дает простое суммирование (снотворные средства усиливают эффект средств для наркоза до токсической выраженности).

Антагонизм

противоположное действие веществ при их совместном применении.

Виды антагонизма:

физический (сорбция витаминов на энтерособентах);

химический (действие кальция на гемокоагуляцию блокируется лимонной и щавелевой кислотами за счет связывания ионизированного кальция);

функциональный - ЛС противоположно действуют на какую-либо функцию (атропин усиливает ЧСС, а пилокарпин - уменьшает - противоположное действие на М-холинорецепторы)

Виды антагонизма

- Прямой функциональный антагонизм противоположное действие на одну функцию (фенилэфрин повышает тонус сосудов, а празозин- снижает за счет прямого действия на αадренорецепторы).
- Косвенный антагонизм- противоположное действие на функцию осуществляется при воздействии на разные субстраты (атропин расширяет зрачок, а неостигмиин вызывает сужение зрачка, блокируя ферментацетилхолинэстеразу)
- Односторонний антагонизм атропин снимает действие пилокарпина, а пилокарпин не действует на активность атропина.
- Двустронний антагонизм (наркотические и снотворные ЛС уменьшают эффект психостимуляторов ЦНС, а последние могут уменьшать эффект психостимуляторов ЦНС)

Виды ятрогений. Лекарственная ятрогения

Ятрогения - изменения здоровья пациента к худшему, вызванные неосторожным действием и словом врача (медицинского работника)

Освальд Бумке (немецкий психиатр)

«Врач как причина душевных растройств»

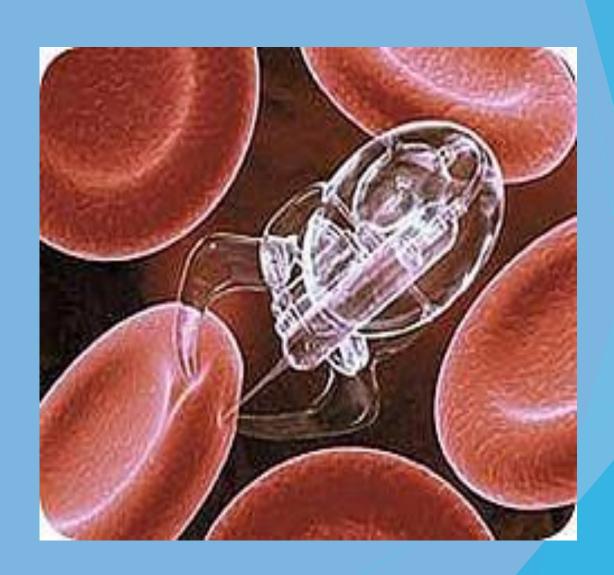
МКБ-10 - **ЯТРОГЕНИЯ** — любые нежелательные или неблагоприятные последствия профилактических, диагностических и лечебных вмешательств, которые приводят к нарушениям функций организма, ограничению привычной деятельности, инвалидизации и смерти, развившиеся в результате как ошибочных, так и правильных действий врача

Виды ятрогений. Лекарственная ятрогения

- . Психогенные,
- . Лекарственные,
- . Травматические,
- . Инфекционные,
- . Смешанные.

Лекарственная ятрогения

Нарушения, вызванные действием лекарс<mark>твенных</mark> препаратов, в том числе аллергией на <mark>них</mark>

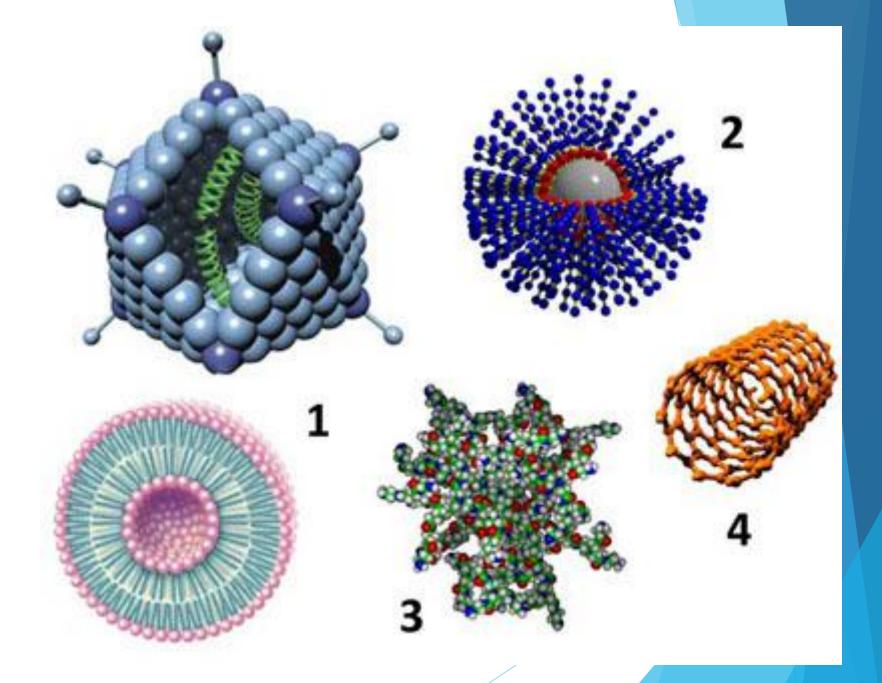

- □Побочные эффекты препаратов;
- Лекарственные отравления при злоупотреблении лекарствами;
- □Лекарственная аллергия;
- Лекарственная непереносимость неаллергического характера;
- □Лекарственная зависимость;
- . Лекарственные психозы;
- Осложнения заболевания, вызванные несовместимостью одновременно вводимых лекарств;
- ■Постпрививочные реакции и осложнения

Виды лекарственной терапии

- **□ Этиотропная**;
- Патогенетическая;
- **Симптоматическая**;
- Заместительная;
- Превентивная (от англ. prevent, лат. praevenia предотвращать, не допускать)

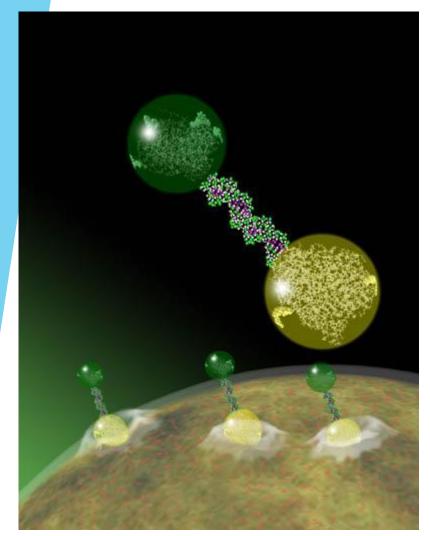
НАНОТЕХНОЛОГИИ

=

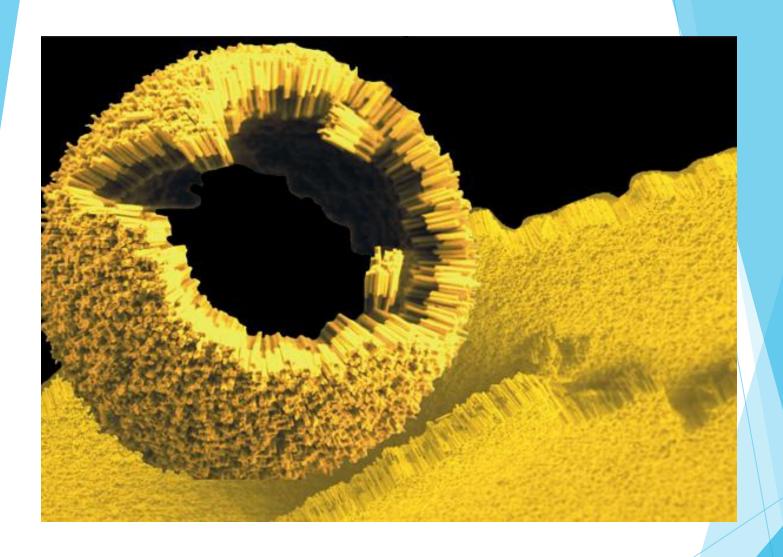


НАНОТЕХНОЛОГИИ ВФАРМАКОЛОГИИ

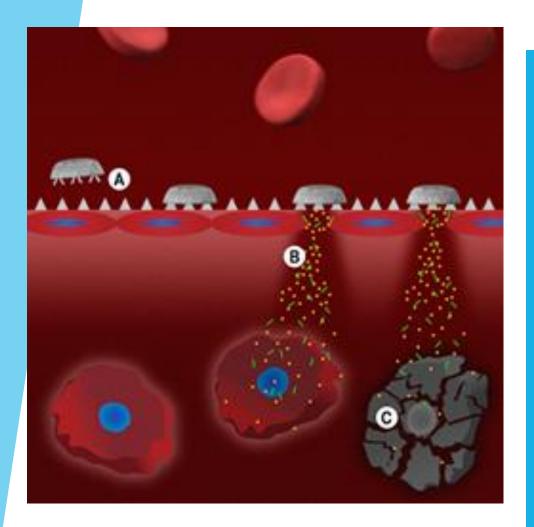
НАНОТЕХНОЛОГИИ ОПЕРИРУЮТ С
ОБЪЕКТАМИ НАНОМЕТРИЧЕСКОГО РАЗМЕРА
(ОТ ГРЕЧ. NANNOS – «КАРЛИК») ЭТИ ОБЪЕКТЫ
ИСЧИСЛЯЮТСЯ МИЛЛИАРДНЫМИ ДОЛЯМИ
МЕТРА.


ОБЛАСТИ ПРИМЕНЕНИЯ НАНОТЕХНОЛОГИЙ


- 1. АНАЛИТИЧЕСКИЕ НАНОТЕХНОЛОГИИ ДЛЯ ДИАГНОСТИКИ.
- 2. НАНОТЕХНОЛОГИИ ДЛЯ ТРАНСПОРТА ЛЕКАРСТВ.
- 3. НАНОМАТЕРИАЛЫ.
- 4. НАНОРОБОТЫ В МЕДИЦИНЕ.


ТРАНСПОРТНЫЕ СВОЙСТВА НАНОЧАСТИЦ

- 1. НЕОРГАНИЧЕСКИЕ НАНОЧАСТИЦЫ (ЗОЛОТЫЕ, СИЛИКАТНЫЕ, МАГНИТНЫЕ И ДР.)
- 2. ОРГАНИЧЕСКИЕ (НА ОСНОВЕ ПОЛИСАХАРИДОВ, ПОЛИАКРИЛАТОВ М ДР.)
- 3. ЛИПОСОМЫ И ПОЛИМЕРНЫЕ НАНОЧАСТИЦЫ
- 4. ПОЛИМЕРНЫЕ МИЦЕЛЛЫ
- 5. АКТИВНЫЕ НАНОКРИСТАЛЛЫ



- Целевая доставка лекарства
- Микроскопические диски из пористого силикона для доставки противоопухолевых средств

«золотой» полимер – потенциальный носитель лекарственных препаратов

Многоуровневая система доставки препарата

На рисунке финальная стадия, прибытие «нанотранспорта»

А -приземление

В - проникновение

С - целевая доставка к опухолевой ткани