

ФИЗИКО-ХИМИЧЕСКИЕ ОСНОВЫ СПЕКАНИЯ УЛЬТРА- И- НАНОДИСПЕРСНЫХ ПОРОШОКВ ТІС- Мо, ПОЛУЧЕННЫХ В ПРОЦЕССЕ ПЛАЗМЕНОЙ ПЕРЕКОНДЕНСАЦИИ

Студент Козлова В.В. Группа: x-450001 Руководитель:

к,х,н. Ермаков А.Н.

Актуальность:

Актуальность моей работы заключается в возможности использования нанопорошков, в качестве материалов безвольфрамовой керамики инструментального направления или литейных модификаторов для внепечной обработки стали ковшей.

Цели:

настоящей работы являлось - получение Целью титанмолибденового карбида Til-nMonC в индивидуальной форме в виде нанокристаллических и ультрадисперсных порошков в ходе плазмохимического синтеза в низкотемпературной азотной (4000 – 6000°C) плазме с последующей структурно-морфологической аттестацией методами рентгенографии и растровой электронной Формирование закономерностей фазомикроскопии. И структурообразования, протекающих в условиях жидкофазного спекания в вакууме ультра- и нанодисперсных порошковых «core-shell»-структур TiC - Мо при 1500° С в течение 40 мин.

Задачи:

1. Разработка модели формирования нанокристаллических частиц TiC-Mo c «core-shell»-структурой в условиях плазменной переконденсации во вращающемся цилиндре газообразного азота.

2.Осуществить жидкофазное спекание ультра - и нанодисперсных «core-shell» структур в условиях вакуума с последующей их структурно-морфологической аттестации методами рентгенографии и микроскопии.

3. Сформулировать механизм жидкофазного взаимодействия в «core-shell» структурах TiC-Mo.

Результаты рентгенофазового анализа переконденсированных фракций TiC-Mo.

Фракция	Фазовый состав, масс.%; a, b, c,(±0.0001 Å)	ρ,	S _{vл} ,	d,
		г/см ³	м2/г	МКМ
TiC-Mo	Мо (пр. гр. Im-3m) (37.95%), а = 3.1459	5.249	0.2928	3.903
(бункер)	ТіС (пр. гр. Fm-3m) (17.50%), а = 4.2336	1		9
	$Mo_{0.48}C_{0.52}$ (пр. гр. Pnnm) (44.55%), a = 5.1255,			
	b = 4.7848, c = 2.9709			
TiC-Mo	Мо (пр. гр. Іт-3т)(25.95%),а = 3.1454	4.822	1.1663	1.066
(циклон)	ТіС (пр. гр. Fm-3m) (31.92%),а = 4.2341	9		7
	Мо _{0.48} С _{0.52} (пр. гр. Рипт) (42.13%), а= 5.1289,			
	b = 4.7753, c = 2.9709			
TiC-Mo	Мо (пр. гр. Іт-3т)(12.28%), а = 3.1419	4.1198	14.324	0.101
(фильтр)	ТіС (пр. гр. Fm-3m)(34.55%), a = 4.2354		9	7
	$Mo_{0.48}C_{0.52}$ (пр. гр. Pnnm)(9.99%), a = 5.1268, b			
	= 4.8054, c = 2.9643			
	TiO_{2} (пр. гр. P42/mnm) (43.18%), a = 4.5860, c			
	=2.9637			

Температуры кипения и плавления фазовых составляющих переконденсированной композиции TiC – Mo – Co.

Фаза	t _{кип} , °С	t _{крист} , °С
TiC	4300	3300
Мо	4885	2617
Ti	3287	1670
MoC	-	2700

Механизм формирования «core-shell»-структуры TiC-Mo при переконденсации во вращающемся цилиндрическом

Результаты РФА ТіМоС, спеченного при 1500°С в течение 40 минут.

№ п/п	Фракция	Фазовый состав, масс. %, a, b, c, (±0.0001
		Å)
1	ТіС-Мо (бункер)	$Ti_{1-n} Mo_nC (Fm-3m) (28.38\%), a = 4.2358;$
		Mo (Im-3m) (19.50%), a = 3.5584;
		C (Fd-3m) (52.13%), a = 3.1512
2	ТіС-Мо (циклон)	$Ti_{1-n} Mo_nC (Fm-3m) (81.55\%), a = 4.2335;$
		Mo (Im-3m) (18.45%), a = 3.1523
3	ТіС-Мо (фильтр)	TiO (P42/mnm) (50.52%), a = 4.1969;
		Ti_2O_3 (P-3m) (49.48%), a = 5.1440, c =
		13.6127

Электронно-микроскопические изображения спеченной в вакууме при 1500⁰С в течение 40 мин. композиции TiC – Мо (фракция из бункера).

уральский федеральный Карты распределения и результаты EDX-анализа

композита TiMoC (бункер), спеченного при 1500°C

в течение 40 мин

		№ Массовый %					
	Market Based	точки	С	N	0	Ti	Мо
		1	1,46	1,43	2,00	3,02	92,09
SALAR		2	2,41	3,32	1,28	2,51	90,49
		3	3,25	0,27	3,20	12,42	80,86
20kV X2,000 10µm 11 41 BES	Мо	4	2,71	2,24	2,08	2,54	90,42
		5	1,00	0,51	8,89	82,08	7,52
		6	-	-	4,62	89,38	6,00
		7	-	2,01	3,54	82,50	11,95
		8	5,16	-	5,78	31,01	58,05
		9	2,03	1,40	2,83	38,70	55,03
	ЭК 28 µл	10	2,52	-	8,45	56,72	32,32
		11	3,26	0,06	4,71	45,82	46,15
		12	2,35	1,97	2,24	92,66	0,79
		13	1,93	-	-	57,48	40,59
		14	3,07	1,59	0,37	51,02	43,95
		15	2,80	-	12,47	70,06	14,67
11 T		16	2,07	0,50	6,21	67,50	23,72

федеральный университет Карты распределения и результаты EDX-анализа

Уральский

композита TiMoC (циклон), спеченного при 1500°C в течение 40 мин

		N⁰	Массовый %			í %	
		ТОЧКИ	С	N	0	Ti	Mo
	Мо	1	2,92	0,94	0,96	22,68	72,79
20KV X2,000 10µm 11 41 BES		2	11,55	2,09	4,58	51,39	30,40
	18 . All 19 . All 19	3	2,30	1,32	2,18	22,58	71,62
		4	4,44	2,99	1,45	22,42	68,70
		5	0,66	1,23	5,41	89,50	3,21
	2 J Jun	6	3,36	0,72	-	23,09	72,82
- 1 L - 300		7	0,34	1,48	1,67	95,10	1,41
		8	-	2,31	1,11	94,14	2,43
		9	0,76	2,51	0,74	28,24	67,75
		10	-	2,93	0,21	86,83	10,03
12 T							

Результаты EDX^{ФИО} группа за композита TiMoC^{7.06.2019}

(фильтр), спеченного при 1500°С в течение 40 мин

Механизм жидкофазного взаимодействия в «core-shell» структурах TiC-Mo

$\Pi P(Ti_{1-n}Mo_nC_x) = \Pi P(Ti_3Mo)$

15

Прогноз применения результатов выполненной дипломной научно-исследовательской работы

Наименование показателя	Ед. изм.	Значение				
1. Количественные показатели						
1.1 Затраты на выполнение исследований всего, в том числе:	руб.	162458				
Затраты на материалы и реактивы;	руб.	8200				
Стоимость израсходованной в процессе исследования электроэнергии;	руб.	3472,5				
Заработная плата работников, участвующих в исследовании;	руб.	11367,6				
Страховые взносы;	руб.	2372,5				
Затраты на содержание и эксплуатацию оборудования	руб.	78218,4				
Услуги сторонних организаций	руб.	1666,7				
Накладные расходы.	руб.	21059,54				
1.2 Количество полученного продукта	КГ	0,5				
1.3 Количество сырья, пошедшего на анализ	КГ	0,003				
1.4 Температура синтеза	К	4273 - 6273				
1.5 Время синтеза	часов	77				

Выводы

1. Предложена схема «core-shell» TiC-Mo фазообразования, основанная на разделении закалочной камеры температурными барьерами, соответствующими температурам кристаллизации зафиксированных фазовых составляющих. Необходимо дополнить, что предложенная схема фазообразования протекает в условиях охлаждения парогазовой смеси со скоростью 10⁵°C/с с учетом влияния вращающегося цилиндра газообразного азота в закалочной камере, выступающего в роли охладителя реактивного парогазового потока.

2. Проведено жидкофазное спекание нано - и ультрадисперсных «core-shell» структур TiC-Mo спечённые композиции содержат в своем составе сложный титан молибден карбиды и металлический молибден. Методами РЭМ и EDX показано распределение элементов по поверхности шлифа.

3. На основе данных рентгенографии и электронной микроскопии сформулирован механизм жидкофазного взаимодействия в вакууме в системе TiC-Mo.

Выражаю искреннюю благодарность за помощь в проведении исследований

Сотрудникам УрФУ имени первого Президента России Б.Н. Ельцина

Руководителю, к.х.н. **Ермакову Алексею Николаевичу** Зав.кафедрой, проф.,д.х.н. **Маркову Вячеславу Филипповичу** Сотрудникам института физики металлов УрО РАН

Электронно-микроскопическое ПЭМ ВР изображение и FFTпреобразование нанокристаллической частицы TiC – Мо

Электронно-микроскопические ПЭМ ВР изображения с «core-shell»-структурой частиц TiC-Mo

