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Linear Algebra
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2.1 Addition, Scalar Multiplication, 
and Multiplication of Matrices

Definition
Two matrices are equal if they are of the same size and if their 
corresponding elements are equal. 

•aij: the element of matrix A in row i and column j.
•For a square n×n matrix A, the main diagonal is:

Thus A = B if aij = bij    ∀ i, 
j.

(∀ for every, for 
all)
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Addition of Matrices
Definition
Let A and B be matrices of the same size. 
Their sum A + B is the matrix obtained by adding together the 
corresponding elements of A and B. 
The matrix A + B will be of the same size as A and B. 
If A and B are not of the same size, they cannot be added, and we 
say that the sum does not exist.
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Example 1

Determine A + B and A + C, if the sum exist.

Solution 

(2) Because A is 2 × 3 matrix and C is a 2 × 2 matrix, they are 
not of the same size, A + C does not exist.
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Scalar Multiplication of matrices
Definition
Let A be a matrix and c be a scalar. The scalar multiple of A by c, 
denoted cA, is the matrix obtained by multiplying every element 
of A by c. The matrix cA will be the same size as A.

Example 2 

Observe that A and 3A are both 2 × 3 matrices.
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Negation and Subtraction
Definition
We now define subtraction of matrices in such a way that makes it 
compatible with addition, scalar multiplication, and negative.  Let

A – B = A + (–1)B 

Example 3
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Multiplication of Matrices
Definition
Let the number of columns in a matrix A be the same as the 
number of rows in a matrix B. The product AB then exists. 

If the number of columns in A does not equal the number of row B, 
we say that the product does not exist.

Let A: m×n matrix, B: n×k matrix,
The product matrix C=AB has elements

C is a m×k matrix.
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Example 4

BA and AC do not exist.

  Solution.

Note. In general, AB≠BA.
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Example 5
Determine AB.

Example 6 

Let C = AB, Determine c23.
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Size of a Product Matrix
If A is an m × r matrix and B is an r × n matrix, then AB will be an 
m × n matrix.

A
m × r

B
r × n

= AB
m × n

Example 7 

If A is a 5 × 6 matrix and B is an 6 × 7 matrix. 
Because A has six columns and B has six rows. Thus AB exits.
And AB will be a 5 × 7 matrix.
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Definition
A zero matrix is a matrix in which all the elements are zeros. 
A diagonal matrix is a square matrix in which all the elements 
not on the main diagonal are zeros. 
An identity matrix is a diagonal matrix in which every diagonal 
element is 1. 

Special Matrices
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Theorem 2.1
Let A be m × n matrix and Omn be the zero m × n matrix. Let B be 
an n × n square matrix. On and In be the zero and identity n × n 
matrices. Then

A + Omn = Omn + A = A
BOn = OnB = On

BIn = InB = B

Example 8 
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Homework

• Exercises will be given by the teachers of the 
practical classes.

Exercise 

Let A be a matrix whose third row is all zeros. Let B be any 
matrix such that the product AB exists. 
Prove that the third row of AB is all zeros. 

Solution
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2.2 Algebraic Properties of Matrix 
Operations

Theorem 2.2 -1

Let A, B, and C be matrices and a, b, and c be scalars. Assume that the 
size of the matrices are such that the operations can be performed.
Properties of Matrix Addition and scalar Multiplication
1. A + B = B + A Commutative property of addition
2. A + (B + C) = (A + B) + C Associative property of addition
3. A + O = O + A = A (where O is the appropriate zero matrix)
4. c(A + B) = cA + cB Distributive property of addition
5. (a + b)C = aC + bC Distributive property of addition
6. (ab)C = a(bC)
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Let A, B, and C be matrices and a, b, and c be scalars. Assume that the 
size of the matrices are such that the operations can be performed.
Properties of Matrix Multiplication
1. A(BC) = (AB)C Associative property of multiplication
2. A(B + C) = AB + AC Distributive property of multiplication
3. (A + B)C = AC + BC Distributive property of multiplication
4. AIn = InA = A         (where In is the appropriate identity matrix)
5. c(AB) = (cA)B = A(cB)
Note: AB≠ BA in general. Multiplication of matrices is not 

commutative.

Theorem 2.2 -2
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Example 9

Proof of Theorem 2.2 (A+B=B+A)
Consider the (i,j)th elements of matrices A+B and B+A:

∴ 
A+B=B+A
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Arithmetic Operations

If A is an m × r matrix and B is r × n matrix, the number of scalar 
multiplications involved in computing the product AB is mrn.

  

Consider three matrices  A, B and C such that the product 
ABC exists.
Compare the number of multiplications involved in the 
two ways (AB)C and A(BC) of computing the product ABC



Ch2_18

Example 10

Compute ABC.

Solution. 
(1) (AB)C

(2) A(BC)

Count the number of 
multiplications.

Which method is better?

2×6+3×2
=12+6=18

3×2+2×2
=6+4=10

∴ A(BC) is 
better.
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In algebra we know that the following cancellation laws apply.
•  If ab = ac and a ≠ 0 then b = c.
•  If pq = 0 then p = 0 or q = 0.
However the corresponding results are not true for matrices.
•  AB = AC does not imply that B = C.
•  PQ = O does not imply that  P = O or Q = O.

Caution

Example 11
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Powers of Matrices

Theorem 2.3

If A is an n × n square matrix and r and s are nonnegative 
integers, then 
1.  ArAs = Ar+s.
2.  (Ar)s = Ars.
3.  A0 = In (by definition)

Definition

If A is a square matrix, then
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Example 12

Solution

We can’t add the two matrices

！

Example 13 Simplify the following matrix expression.

Solution
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Systems of Linear Equations

A system of m linear equations in n variables as follows

Let

We can write the system of equations in the matrix form

AX = B
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Idempotent and Nilpotent Matrices

Definition
(1) A square matrix A is said to be idempotent if A2=A.
(2) A square matrix A is said to nilpotent if there is a 

 positive integer p such that Ap=0. The least integer p such that 
Ap=0 is called the degree of nilpotency of the matrix.

Example 14



Ch2_24

Homework

• Exercises will be given by the teachers 
of the practical classes. 
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2.3 Symmetric Matrices

Definition
The transpose of a matrix A, denoted At, is the matrix whose 
columns are the rows of the given matrix A.

Example 15
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Theorem 2.4: Properties of Transpose

Let A and B be matrices and c be a scalar. Assume that the sizes 
of the matrices are such that the operations can be performed.
1.  (A + B)t = At + Bt Transpose of a sum
2.  (cA)t = cAt Transpose of a scalar multiple
3.  (AB)t = BtAt Transpose of a product
4.  (At)t = A
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Symmetric Matrix

match

match

Definition
A symmetric matrix is a matrix that is equal to its transpose.

Example 16
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 Remark:  If and only if

• Let p and q be statements.
Suppose that p implies q (if p then q), written p ⇒ q,
and that also q ⇒ p, we say that

“p if and only if q”  (in short iff )
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Example 17

*We have to show (a) AB is symmetric ⇒ AB = BA, 
  and the converse, (b) AB is symmetric ⇐ AB = BA.

(⇒) Let AB be symmetric, then
AB= (AB)t            by definition of symmetric matrix
     = BtAt                    by Thm 2.4 (3)
       = BA               since A and B are symmetric

(⇐) Let AB = BA, then
(AB)t = (BA)t

             = AtBt              by Thm 2.4 (3)
                     = AB           since A and B are symmetric

Proof

Let  A and B be symmetric matrices of the same size. Prove that 
the product AB is symmetric if and only if AB = BA.
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Example 18

Proof

Let  A be a symmetric matrix. Prove that A2 is symmetric.



Homework

• Exercises  will be given by the teachers of 

the practical classes. 
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2.4 The Inverse of a Matrix
Definition
Let A be an n × n matrix. If a matrix B can be found such that 
AB = BA = In, then A is said to be invertible   and B is called the 
inverse   of A. If such a matrix B does not exist, then A has no 
inverse. (denote B = A−1, and A−k=(A−1)k )

Example 19
Prove that the matrix                    has inverse

Proof

Thus AB = BA = I2, proving that the matrix A has inverse B.
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Theorem 2.5
The inverse of an invertible matrix is unique.

Proof

Let B and C be inverses of A. 
Thus AB = BA = In, and AC = CA = In.
Multiply both sides of the equation AB = In by C.

C(AB) = CIn
(CA)B = C

InB = C
B = C

Thus an invertible matrix has only one inverse.

Thm2.2
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Gauss-Jordan Elimination for finding 
the Inverse of a Matrix

Let A be an n × n matrix.
1.  Adjoin the identity n × n matrix In to A to form the matrix   [A 

: In].
2.  Compute the reduced echelon form of [A : In].
     If the reduced echelon form is of the type [In : B], then B is 

the inverse of A.
     If the reduced echelon form is not of the type [In : B], in that 

the first n × n submatrix is not In, then A has no inverse.

An n × n matrix A is invertible if and only if its reduced echelon 
form is In.
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Example 20
Determine the inverse of the matrix

Solution
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Example 21
Determine the inverse of the following matrix, if it exist.

Solution

There is no need to proceed further. 
The reduced echelon form cannot have a one in the (3, 3) location. 
The reduced echelon form cannot be of the form [In : B]. 
Thus A–1 does not exist.
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Properties of Matrix Inverse
Let A and B be invertible matrices and c a nonzero scalar, Then

Proof
1. By definition, 
AA−1=A−1A=I.
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Example 22

Solution
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Theorem 2.6

Let AX = B be a system of n linear equations in n variables. 
If A–1 exists, the solution is unique and is given by X = A–1B. 

Proof
(X = A–1B is a solution.)
Substitute X = A–1B into the matrix equation.

AX = A(A–1B) = (AA–1)B = In B = B.

(The solution is unique.)
Let Y be any solution, thus AY = B. Multiplying both sides of this 
equation by A–1 gives

A–1A Y= A–1B  
     In Y= A–1B

                             Y = A–1B.   Then  Y=X .
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Example 22
Solve the system of equations

Solution
This system can be written in the following matrix form:

If the matrix of coefficients is invertible, the unique solution is

This inverse has already been found in Example 20. We get
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Elementary Matrices
Definition
 An elementary matrix is one that can be obtained from the 
identity matrix In through a single elementary row operation.

Example 23
R2 ↔ R3

5R2

R2+ 2R1
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Elementary Matrices

R2 ↔ R3

5R2

R2+ 2R1

 。 Elementary row operation
 。 Elementary matrix
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Notes for elementary matrices
• Each elementary matrix is invertible.

Example 24

• If A and B are row equivalent matrices and A is 
invertible, then B is invertible.

Proof
If A ≈ … ≈ B, then
B=En … E2 E1 A for some elementary matrices En, … , E2 and 
E1. 
So B−1 = (En … E2 E1A)−1 =A−1E1

−1 E2
−1 … En

−1.
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Homework

• Exercises will be given by the teachers of the practical 
classes.

Exercise  

If                     , show that         


