Linear Algebra

Chapter 2 Matrix Algebra

2.1 Addition, Scalar Multiplication,

and Multiplication of Matrices

- $a_{i j}$: the element of matrix A in row i and column j.
- For a square $n \times n$ matrix A, the main diagonal is:

Definition

Two matrices are equal if they are of the same size and if their corresponding elements are equal.

Thus $A=B$ if $a_{i j}=b_{i j} \quad \forall i$, j.
(\forall for every, for all)

Addition of Matrices

Definition

Let A and B be matrices of the same size.
Their sum $A+B$ is the matrix obtained by adding together the corresponding elements of A and B.
The matrix $A+B$ will be of the same size as A and B.
If A and B are not of the same size, they cannot be added, and we say that the sum does not exist.

Thus if $C=A+B$, then $c_{i j}=a_{i j}+b_{i j} \forall i, j$.

Example 1

Let $A=\left[\begin{array}{rrr}1 & 4 & 7 \\ 0 & -2 & 3\end{array}\right], B=\left[\begin{array}{rrr}2 & 5 & -6 \\ -3 & 1 & 8\end{array}\right]$, and $C=\left[\begin{array}{rr}-5 & 4 \\ 2 & 7\end{array}\right]$.
Determine $A+B$ and $A+C$, if the sum exist.

Solution

(1) $A+B=\left[\begin{array}{rrr}1 & 4 & 7 \\ 0 & -2 & 3\end{array}\right]+\left[\begin{array}{rrr}2 & 5 & -6 \\ -3 & 1 & 8\end{array}\right]$
$=\left[\begin{array}{rrr}1+2 & 4+5 & 7-6 \\ 0-3 & -2+1 & 3+8\end{array}\right]$
$=\left[\begin{array}{rrr}3 & 9 & 1 \\ -3 & -1 & 11\end{array}\right]$.
(2) Because A is 2×3 matrix and C is a 2×2 matrix, they are not of the same size, $A+C$ does not exist.

Scalar Multiplication of matrices

Definition

Let A be a matrix and c be a scalar. The scalar multiple of A by c, denoted $c A$, is the matrix obtained by multiplying every element of A by c. The matrix $c A$ will be the same size as A.

Thus if $B=c A$, then $b_{i j}=c a_{i j} \forall i, j$.

Example 2
Let $A=\left[\begin{array}{lll}1 & -2 & 4 \\ 7 & -3 & 0\end{array}\right]$.
$3 A=\left[\begin{array}{ccc}3 \times 1 & 3 \times(-2) & 3 \times 4 \\ 3 \times 7 & 3 \times(-3) & 3 \times 0\end{array}\right]=\left[\begin{array}{rrr}3 & -6 & 12 \\ 21 & -9 & 0\end{array}\right]$.
Observe that A and $3 A$ are both 2×3 matrices.

Negation and Subtraction

Definition

We now define subtraction of matrices in such a way that makes it compatible with addition, scalar multiplication, and negative. Let

$$
A-B=A+(-1) B
$$

Example 3

Suppose $A=\left[\begin{array}{rrr}5 & 0 & -2 \\ 3 & 6 & -5\end{array}\right]$ and $B=\left[\begin{array}{rrr}2 & 8 & -1 \\ 0 & 4 & 6\end{array}\right]$.
$A-B=\left[\begin{array}{rrr}5-2 & 0-8 & -2-(-1) \\ 3-0 & 6-4 & -5-6\end{array}\right]=\left[\begin{array}{rrr}3 & -8 & -1 \\ 3 & 2 & -11\end{array}\right]$.

Multiplication of Matrices

Definition

Let the number of columns in a matrix A be the same as the number of rows in a matrix B. The product $A B$ then exists.

Let $A: m \times n$ matrix, $B: n \times k$ matrix,
The product matrix $\boldsymbol{C}=\boldsymbol{A} \boldsymbol{B}$ has elements

$$
c_{i j}=\left[\begin{array}{llll}
a_{i 1} & a_{i 2} & \boxtimes & a_{i \underline{\underline{n}}}
\end{array}\right]\left[\begin{array}{c}
b_{1 j} \\
b_{2 j} \\
\boxtimes \\
b_{n j}
\end{array}\right]=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+\boxtimes+a_{i \underline{i n}} b_{\underline{n} j}
$$

C is a $m \times k$ matrix.
If the number of columns in A does not equal the number of row B, we say that the product does not exist.

Example 4

Let $A=\left[\begin{array}{ll}1 & 3 \\ 2 & 0\end{array}\right], B=\left[\begin{array}{rrr}5 & 0 & 1 \\ 3 & -2 & 6\end{array}\right]$, and $C=\left[\begin{array}{lll}6 & -2 & 5\end{array}\right]$.
Determine $A B, B A$, and $A C$, if the products exist.
Solution.

$$
\begin{aligned}
& A B=\left[\begin{array}{ll}
1 & 3 \\
2 & 0
\end{array}\right]\left[\begin{array}{rrr}
5 & 0 & 1 \\
B & -2 & 6
\end{array}\right] \\
& \left.=\left[\begin{array}{ll}
{\left[\begin{array}{ll}
1 & 3
\end{array}\right]\left[\begin{array}{l}
\text { b } \\
B
\end{array}\right]} & {\left[\begin{array}{ll}
1 & 3
\end{array}\right]\left[\begin{array}{r}
0 \\
-2
\end{array}\right]}
\end{array} \begin{array}{ll}
1 & 3
\end{array}\right]\left[\begin{array}{l}
1 \\
6
\end{array}\right]\right] \\
& =\left[\begin{array}{rrr}
(1 \times 5)+(3 \times 3) & (1 \times 0)+(3 \times(-2)) & (1 \times 1)+(3 \times 6) \\
(2 \times 5)+(0 \times 3) & (2 \times 0)+(0 \times(-2)) & (2 \times 1)+(0 \times 6)
\end{array}\right] \\
& =\left[\begin{array}{rrr}
14 & -6 & 19 \\
10 & 0 & 2
\end{array}\right] .
\end{aligned}
$$

$B A$ and $A C$ do not exist. Note. In general, $A B \neq B A$.

Example 5

Let $A=\left[\begin{array}{rr}2 & 1 \\ 7 & 0 \\ -3 & -2\end{array}\right]$ and $B=\left[\begin{array}{rr}-1 & 0 \\ 3 & 5\end{array}\right]$. Determine $A B$.

$$
\begin{aligned}
& \left.\left.\begin{array}{rl}
A B= & =\left[\begin{array}{rr}
2 & 1 \\
7 & 0 \\
-3 & -2
\end{array}\right]\left[\begin{array}{rr}
-1 & 0 \\
3 & 5
\end{array}\right]=\left[\begin{array}{rr}
{\left[\begin{array}{ll}
7 & 0
\end{array}\right]\left[\begin{array}{r}
-1 \\
3
\end{array}\right]} & {\left[\begin{array}{rr}
7 & 0
\end{array}\right]\left[\begin{array}{l}
0 \\
5
\end{array}\right]} \\
{[-3} & -2
\end{array}\right] \\
-1 \\
3
\end{array}\right]\left[\begin{array}{ll}
-3 & -2
\end{array}\right]\left[\begin{array}{l}
0 \\
5
\end{array}\right]\right] .\left[\begin{array}{ll}
1 & 5
\end{array}\right] \\
& =\left[\begin{array}{rr}
-2+3 & 0+5 \\
-7+0 & 0+0 \\
3-6 & 0-10
\end{array}\right]=\left[\begin{array}{rr}
1 & 5 \\
-7 & 0 \\
-3 & -10
\end{array}\right]
\end{aligned}
$$

Example 6
Let $C=A B, A=\left[\begin{array}{rr}2 & 1 \\ -3 & 4\end{array}\right]$ and $B=\left[\begin{array}{rrr}-7 & 3 & 2 \\ 5 & 0 & 1\end{array}\right]$ Determine c_{23}.

$$
c_{23}=\left[\begin{array}{ll}
-3 & 4
\end{array}\right]\left[\begin{array}{l}
2 \\
1
\end{array}\right]=(-3 \times 2)+(4 \times 1)=-2
$$

Size of a Product Matrix

If A is an $m \times r$ matrix and B is an $r \times n$ matrix, then $A B$ will be an $m \times n$ matrix.

Example 7

If A is a 5×6 matrix and B is an 6×7 matrix.
Because A has six columns and B has six rows. Thus $A B$ exits. And $A B$ will be a 5×7 matrix.

Special Matrices

Definition

A zero matrix is a matrix in which all the elements are zeros.
A diagonal matrix is a square matrix in which all the elements not on the main diagonal are zeros.
An identity matrix is a diagonal matrix in which every diagonal element is 1 .
$O_{m n}=\left[\begin{array}{llll}0 & 0 & \boxtimes & 0 \\ 0 & 0 & \boxtimes & 0 \\ \boxtimes & \boxtimes & \boxtimes & \boxtimes \\ 0 & 0 & \boxtimes & 0\end{array}\right] \quad A=\left[\begin{array}{cccc}a_{11} & 0 & \boxtimes & 0 \\ 0 & a_{22} & \boxtimes & 0 \\ \boxtimes & \boxtimes & \boxtimes & \boxtimes \\ 0 & 0 & \boxtimes & a_{n n}\end{array}\right] \quad I_{n}=\left[\begin{array}{llll}1 & 0 & \boxtimes & 0 \\ 0 & 1 & \boxtimes & 0 \\ \boxtimes & \boxtimes & \boxtimes & \boxtimes \\ 0 & 0 & \boxtimes & 1\end{array}\right]$
zero matrix
identity matrix
diaginal matrix A

Theorem 2.1

Let A be $m \times n$ matrix and $O_{m n}$ be the zero $m \times n$ matrix. Let B be an $n \times n$ square matrix. O_{n} and I_{n} be the zero and identity $n \times n$ matrices. Then

$$
\begin{gathered}
A+O_{m n}=O_{m n}+A=A \\
B O_{n}=O_{n} B=O_{n} \\
B I_{n}=I_{n} B=B
\end{gathered}
$$

Example 8

Let $A=\left[\begin{array}{rrr}2 & 1 & -3 \\ 4 & 5 & 8\end{array}\right]$ and $B=\left[\begin{array}{rr}2 & 1 \\ -3 & 4\end{array}\right]$.
$A+O_{23}=\left[\begin{array}{rrr}2 & 1 & -3 \\ 4 & 5 & 8\end{array}\right]+\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]=\left[\begin{array}{rrr}2 & 1 & -3 \\ 4 & 5 & 8\end{array}\right]=A$
$B O_{2}=\left[\begin{array}{rr}2 & 1 \\ -3 & 3\end{array}\right]\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]=O_{2}$
$B I_{2}=\left[\begin{array}{rr}2 & 1 \\ -3 & 4\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{rr}2 & 1 \\ -3 & 4\end{array}\right]=B$

Homework

- Exercises will be given by the teachers of the practical classes.

Exercise

Let A be a matrix whose third row is all zeros. Let B be any matrix such that the product $A B$ exists.
Prove that the third row of $A B$ is all zeros.

Solution

$(A B)_{3 i}=\left[\begin{array}{lll}a_{31} & a_{32} \boxtimes & a_{3 n}\end{array}\right]\left[\begin{array}{c}b_{1 i} \\ b_{2 i} \\ \boxtimes \\ b_{n i}\end{array}\right]=\left[\begin{array}{lll}0 & 0 \boxtimes & 0\end{array}\right]\left[\begin{array}{c}b_{1 i} \\ b_{2 i} \\ \boxtimes \\ b_{n i}\end{array}\right]=0, \forall i$.

- 2.2 Algebraic Properties of Matrix Operations

Theorem 2.2-1

Let A, B, and C be matrices and a, b, and c be scalars. Assume that the size of the matrices are such that the operations can be performed.
Properties of Matrix Addition and scalar Multiplication

1. $A+B=B+A \quad$ Commutative property of addition
2. $A+(B+C)=(A+B)+C$ Associative property of addition
3. $A+O=O+A=A \quad$ (where O is the appropriate zero matrix)
4. $c(A+B)=c A+c B \quad$ Distributive property of addition
5. $(a+b) C=a C+b C \quad$ Distributive property of addition
6. $(a b) C=a(b C)$

Theorem 2.2-2

Let A, B, and C be matrices and a, b, and c be scalars. Assume that the size of the matrices are such that the operations can be performed. Properties of Matrix Multiplication

1. $A(B C)=(A B) C \quad$ Associative property of multiplication
2. $A(B+C)=A B+A C \quad$ Distributive property of multiplication
3. $(A+B) C=A C+B C \quad$ Distributive property of multiplication
4. $A I_{n}=I_{n} A=A \quad$ (where I_{n} is the appropriate identity matrix)
5. $c(A B)=(c A) B=A(c B)$

Note: $A B \neq B A$ in general. Multiplication of matrices is not commutative.

Proof of Theorem $2.2(A+B=B+A)$

Consider the (i, j) th elements of matrices $A+B$ and $B+A$:

$$
\begin{gathered}
(A+B)_{i j}=a_{i j}+b_{i j}=b_{i j}+a_{i j}=(B+A)_{i j} . \\
\\
\\
\therefore \\
\\
A+B=B+A
\end{gathered}
$$

Example 9

$$
\begin{aligned}
& \text { Let } A= {\left[\begin{array}{rr}
1 & 3 \\
-4 & 5
\end{array}\right], B=\left[\begin{array}{rr}
3 & -7 \\
8 & 1
\end{array}\right] \text {, and } C=\left[\begin{array}{ll}
0 & -2 \\
5 & -1
\end{array}\right] . } \\
& \begin{aligned}
A+B+C & =\left[\begin{array}{rr}
1 & 3 \\
-4 & 5
\end{array}\right]+\left[\begin{array}{rr}
3 & -7 \\
8 & 1
\end{array}\right]+\left[\begin{array}{rr}
0 & -2 \\
5 & -1
\end{array}\right] \\
& =\left[\begin{array}{rr}
1+3+0 & 3-7-2 \\
-4+8+5 & 5+1-1
\end{array}\right]=\left[\begin{array}{rr}
4 & -6 \\
9 & 5
\end{array}\right] .
\end{aligned}
\end{aligned}
$$

Arithmetic Operations

> If A is an $m \times r$ matrix and B is $r \times n$ matrix, the number of scalar multiplications involved in computing the product $A B$ is mrn .

Consider three matrices A, B and C such that the product $A B C$ exists.
Compare the number of multiplications involved in the two ways $(A B) C$ and $A(B C)$ of computing the product $A B C$

Example 10

Let $A=\left[\begin{array}{rr}1 & 2 \\ 3 & -1\end{array}\right], B=\left[\begin{array}{rrr}0 & 1 & 3 \\ -1 & 0 & -2\end{array}\right]$, and $C=\left[\begin{array}{r}4 \\ -1 \\ 0\end{array}\right]$. Compute $A B C$.
Solution.
(1) $(A B) C$

$$
A B=\left[\begin{array}{rr}
1 & 2 \\
3 & -1
\end{array}\right]\left[\begin{array}{rrr}
0 & 1 & 3 \\
-1 & 0 & -2
\end{array}\right]=\left[\begin{array}{rrr}
\text { njultipliquan } \\
1 & 3 & 11
\end{array}\right] .
$$

$$
(A B) C=\left[\begin{array}{rrr}
-2 & 1 & -1 \\
1 & 3 & 11
\end{array}\right]\left[\begin{array}{r}
4 \\
0
\end{array}\right]=\left[\begin{array}{r}
-9 \\
1
\end{array}\right] .
$$

$$
\begin{aligned}
& 2 \times 6+3 \times 2 \\
& =12+6=18
\end{aligned}
$$

(2) $A(B C)$

$$
\begin{aligned}
& B C=\left[\begin{array}{rrr}
0 & 1 & 3 \\
-1 & 0 & 2
\end{array}\right]\left[\begin{array}{r}
4 \\
-1 \\
0
\end{array}\right]=\left[\begin{array}{l}
-1 \\
-4
\end{array}\right] \\
& A(B C)=\left[\begin{array}{rr}
1 & 2 \\
3 & -1
\end{array}\right]\left[\begin{array}{c}
-1 \\
-4
\end{array}\right]=\left[\begin{array}{r}
-9 \\
1
\end{array}\right] .
\end{aligned}
$$

Caution

In algebra we know that the following cancellation laws apply.

- If $a b=a c$ and $a \neq 0$ then $b=c$.
- If $p q=0$ then $p=0$ or $q=0$.

However the corresponding results are not true for matrices.

- $A B=A C$ does not imply that $B=C$.
- $P Q=O$ does not imply that $P=O$ or $Q=O$.

Example 11

(1) Consider the matrices $A=\left[\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right], B=\left[\begin{array}{cc}-1 & 2 \\ 2 & 1\end{array}\right]$, and $C=\left[\begin{array}{cc}-3 & 8 \\ 3 & -2\end{array}\right]$.

Observe that $A B=A C=\left[\begin{array}{ll}3 & 4 \\ 6 & 8\end{array}\right]$, but $B \neq C$.
(2) Consider the matrices $P=\left[\begin{array}{rr}1 & -2 \\ -2 & 4\end{array}\right]$, and $Q=\left[\begin{array}{ll}2 & -6 \\ 1 & -3\end{array}\right]$.

Observe that $P Q=O$, but $P \neq O$ and $Q \neq O$.

Powers of Matrices

Definition

If A is a square matrix, then

$$
A^{k}=\underset{k \text { times }}{A} A
$$

Theorem 2.3

If A is an $n \times n$ square matrix and r and s are nonnegative integers, then

1. $A^{r} A^{s}=A^{r+s}$.
2. $\left(A^{r}\right)^{s}=A^{r s}$.
3. $A^{0}=I_{n}$ (by definition)

Example 12

$$
\text { If } A=\left[\begin{array}{rr}
1 & -2 \\
-1 & 0
\end{array}\right] \text {, compute } A^{4}
$$

Solution

$$
\begin{aligned}
& A^{2}=\left[\begin{array}{rr}
1 & -2 \\
-1 & 0
\end{array}\right]\left[\begin{array}{rr}
1 & -2 \\
-1 & 0
\end{array}\right]=\left[\begin{array}{rr}
3 & -2 \\
-1 & 2
\end{array}\right] \\
& A^{4}=\left[\begin{array}{rr}
3 & -2 \\
-1 & 2
\end{array}\right]\left[\begin{array}{rr}
3 & -2 \\
-1 & 2
\end{array}\right]=\left[\begin{array}{rr}
11 & -10 \\
-5 & 6
\end{array}\right] .
\end{aligned}
$$

Example 13 Simplify the following matrix expression.

$$
A(A+2 B)+3 B(2 A-B)-A^{2}+7 B^{2}-5 A B
$$

Solution

$$
\begin{aligned}
& A(A+2 B)+3 B(2 A-B)-A^{2}+7 B^{2}-5 A B \\
& =A^{2}+2 A B+6 B A-3 B^{2}-A^{2}+7 B^{2}-5 A B \\
& =-3 A B+6 B A+4 B^{2}
\end{aligned}
$$

We can't add the two matrices

Systems of Linear Equations

A system of m linear equations in n variables as follows

$$
\begin{gathered}
a_{11} x_{1}+\boxtimes+a_{1 n} x_{n}=b_{1} \\
\boxtimes \boxtimes \boxtimes \boxtimes \\
a_{m 1} x_{1}+\boxtimes+a_{m n} x_{n}=b_{m}
\end{gathered}
$$

Let

$$
A=\left[\begin{array}{ccc}
a_{11} & \boxtimes & a_{1 n} \\
\boxtimes & \boxtimes & \boxtimes \\
a_{m 1} & \boxtimes & a_{m n}
\end{array}\right], X=\left[\begin{array}{c}
x_{1} \\
\boxtimes \\
x_{n}
\end{array}\right], \text { and } B=\left[\begin{array}{c}
b_{1} \\
\boxtimes \\
b_{m}
\end{array}\right]
$$

We can write the system of equations in the matrix form

$$
A X=B
$$

Idempotent and Nilpotent Matrices

Definition

(1) A square matrix A is said to be idempotent if $A^{2}=A$.
(2) A square matrix A is said to nilpotent if there is a positive integer p such that $A^{p}=0$. The least integer p such that $A^{p}=0$ is called the degree of nilpotency of the matrix.

Example 14

(1) $A=\left[\begin{array}{ll}3 & -6 \\ 1 & -2\end{array}\right], A^{2}=\left[\begin{array}{ll}3 & -6 \\ 1 & -2\end{array}\right]=A$.
(2) $B=\left[\begin{array}{ll}3 & -9 \\ 1 & -3\end{array}\right], B^{2}=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$. The degree of nilpotency :2

- Exercises will be given by the teachers of the practical classes.

2.3 Symmetric Matrices

Definition

The transpose of a matrix A, denoted A^{t}, is the matrix whose columns are the rows of the given matrix A.
i.e., $A: m \times n \Rightarrow A^{t}: n \times m,\left(A^{t}\right)_{i j}=A_{j i} \forall i, j$.

Example 15

$$
\begin{aligned}
& A=\left[\begin{array}{rr}
2 & 7 \\
-8 & 0
\end{array}\right], B=\left[\begin{array}{rrr}
1 & 2 & -7 \\
4 & 5 & 6
\end{array}\right] \text {, and } C=\left[\begin{array}{lll}
-1 & 3 & 4
\end{array}\right] . \\
& A^{t}=\left[\begin{array}{rr}
2 & -8 \\
7 & 0
\end{array}\right] \quad B^{t}=\left[\begin{array}{rr}
1 & 4 \\
2 & 5 \\
-7 & 6
\end{array}\right] \quad C^{t}=\left[\begin{array}{r}
-1 \\
3 \\
4
\end{array}\right] .
\end{aligned}
$$

Theorem 2.4: Properties of Transpose

Let A and B be matrices and c be a scalar. Assume that the sizes of the matrices are such that the operations can be performed.

1. $(A+B)^{t}=A^{t}+B^{t} \quad$ Transpose of a sum
2. $(c A)^{t}=c A^{t} \quad$ Transpose of a scalar multiple
3. $(A B)^{t}=B^{t} A^{t} \quad$ Transpose of a product
4. $\left(A^{t}\right)^{t}=A$

Symmetric Matrix

Definition

A symmetric matrix is a matrix that is equal to its transpose.

$$
A=A^{t}, \quad \text { i.e., } \quad a_{i j}=a_{j i} \forall i, j
$$

Example 16

$$
\left[\begin{array}{rr}
2 & 5 \\
5 & -4
\end{array}\right]\left[\begin{array}{rrr}
0 & 1 & -4 \\
1 & 7 & 8 \\
-4 & 8 & -3
\end{array}\right]\left[\begin{array}{rrrr}
1 & 0 & -2 & 4 \\
0 & 7 & 3 & 9 \\
-2 & 3 & 2 & -3 \\
4 & 9 & -3 & 6
\end{array}\right] \text { match }
$$

Remark: If and only if

- Let p and q be statements. Suppose that p implies q (if p then q), written $p \Rightarrow q$, and that also $q \Rightarrow p$, we say that
" p if and only if q " (in short iff)

Example 17

Let A and B be symmetric matrices of the same size. Prove that the product $A B$ is symmetric if and only if $A B=B A$.

Proof

*We have to show (a) $A B$ is symmetric $\Rightarrow A B=B A$, and the converse, (b) $A B$ is symmetric $\Leftarrow A B=B A$.
(\Rightarrow) Let $A B$ be symmetric, then

$$
\begin{aligned}
A B & =(A B)^{t} & & \text { by definition of symmetric matrix } \\
& =B^{t} A^{t} & & \text { by Thm } 2.4(3) \\
& =B A & & \text { since } A \text { and } B \text { are symmetric }
\end{aligned}
$$

(\Leftarrow) Let $A B=B A$, then

$$
\begin{array}{rlr}
(A B)^{t}= & (B A)^{t} & \\
= & A^{t} B^{t} & \text { by Thm } 2.4(3) \\
& =A B & \text { since } A \text { and } B \text { are symmetric }
\end{array}
$$

Example 18

Let A be a symmetric matrix. Prove that A^{2} is symmetric.

Proof

$$
\left(A^{2}\right)^{t}=(A A)^{t}=\left(A^{t} A^{t}\right)=A A=A^{2}
$$

Homework

- Exercises will be given by the teachers of the practical classes.

2.4 The Inverse of a Matrix

Definition

Let A be an $n \times n$ matrix. If a matrix B can be found such that $A B=B A=I_{n}$, then A is said to be invertible and B is called the inverse of A. If such a matrix B does not exist, then A has no inverse. (denote $B=A^{-1}$, and $A^{-k}=\left(A^{-1}\right)^{k}$)

Example 19

Proof

$A B=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]\left[\begin{array}{rr}-2 & 1 \\ \frac{3}{2} & -\frac{1}{2}\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=I_{2}$
$B A=\left[\begin{array}{rr}-2 & 1 \\ \frac{3}{2} & -\frac{1}{2}\end{array}\right]\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=I_{2}$
Thus $A B=B A=I_{2}$, proving that the matrix A has inverse B.

Theorem 2.5

The inverse of an invertible matrix is unique.

Proof

Let B and C be inverses of A.
Thus $A B=B A=I_{n}$, and $A C=C A=I_{n}$.
Multiply both sides of the equation $A B=I_{n}$ by C.

$$
\begin{aligned}
& C(A B)=C I_{n} \\
& (C A) B=C \\
& I_{n} B=C \\
& B=C
\end{aligned}
$$

Thus an invertible matrix has only one inverse.

Gauss-Jordan Elimination for finding the Inverse of a Matrix

Let A be an $n \times n$ matrix.

1. Adjoin the identity $n \times n$ matrix I_{n} to A to form the matrix $\quad[A$ $\left.: I_{n}\right]$.
2. Compute the reduced echelon form of $\left[A: I_{n}\right]$.

If the reduced echelon form is of the type $\left[I_{n}: B\right]$, then B is the inverse of A.
If the reduced echelon form is not of the type $\left[I_{n}: B\right]$, in that the first $n \times n$ submatrix is not I_{n}, then A has no inverse.

An $n \times n$ matrix A is invertible if and only if its reduced echelon form is I_{n}.

Example 20

Determine the inverse of the matrix $A=\left[\begin{array}{rrr}1 & -1 & -2 \\ 2 & -3 & -5 \\ -1 & 3 & 5\end{array}\right]$
Solution

$$
\begin{aligned}
& {\left[A: I_{3}\right]=\left[\begin{array}{rrrrrr}
1 & -1 & -2 & 1 & 0 & 0 \\
2 & -3 & -5 & 0 & 1 & 0 \\
-1 & 3 & 5 & 0 & 0 & 1
\end{array}\right] \underset{\mathrm{R} 2+(-2) \mathrm{R} 1}{\underset{\mathrm{R}}{ }+\mathrm{R} 1}\left[\begin{array}{rrrrrr}
1 & -1 & -2 & 1 & 0 & 0 \\
0 & -1 & -1 & -2 & 1 & 0 \\
0 & 2 & 3 & 1 & 0 & 1
\end{array}\right]} \\
& \underset{(-1) \mathrm{R} 2}{\approx}\left[\begin{array}{rrrrrr}
1 & -1 & -2 & 1 & 0 & 0 \\
0 & 1 & 1 & 2 & -1 & 0 \\
0 & 2 & 3 & 1 & 0 & 1
\end{array}\right] \underset{\mathrm{R} 3+(-2) \mathrm{R} 2}{\mathrm{R} 1+\mathrm{R} 2} \underset{\left(\begin{array}{llrrrr}
1 & 0 & -1 & 3 & -1 & 0 \\
0 & 1 & 1 & 2 & -1 & 0 \\
0 & 0 & 1 & -3 & 2 & 1
\end{array}\right]}{\approx} \\
& \underset{\mathrm{R} 1+\mathrm{R} 3}{\approx} \underset{\mathrm{R} 2+(-1) \mathrm{R} 3}{\approx}\left[\begin{array}{lll|lrr}
1 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 5 & -3 & -1 \\
0 & 0 & 1 & -3 & 2 & 1
\end{array}\right]
\end{aligned}
$$

Thus, $A^{-1}=\left[\begin{array}{rrr}0 & 1 & 1 \\ 5 & -3 & -1 \\ -3 & 2 & 1\end{array}\right]$.

Example 21

Determine the inverse of the following matrix, if it exist.

$$
A=\left[\begin{array}{rrr}
1 & 1 & 5 \\
1 & 2 & 7 \\
2 & -1 & 4
\end{array}\right]
$$

Solution

There is no need to proceed further.
The reduced echelon form cannot have a one in the $(3,3)$ location.
The reduced echelon form cannot be of the form $\left[I_{n}: B\right]$.
Thus A^{-1} does not exist.

Properties of Matrix Inverse

Let A and B be invertible matrices and c a nonzero scalar, Then

1. $\left(A^{-1}\right)^{-1}=A$
2. $(c A)^{-1}=\frac{1}{c} A^{-1}$
3. $(A B)^{-1}=B^{-1} A^{-1}$
4. $\left(A^{n}\right)^{-1}=\left(A^{-1}\right)^{n}$
5. $\left(A^{t}\right)^{-1}=\left(A^{-1}\right)^{t}$

Proof

1. By definition,
2. $A^{-1}(\bar{c} A A)\left(\frac{1}{c} A \bar{A}^{I t}\right)=I=\left(\frac{1}{c} A^{-1}\right)(c A)$
3. $(A B)\left(B^{-1} A^{-1}\right)=A\left(B B^{-1}\right) A^{-1}=A A^{-1}=I=\left(B^{-1} A^{-1}\right)(A B)$
 n times n times
4. $A A^{-1}=I,\left(A A^{-1}\right)^{t}=\left(A^{-1}\right)^{t} A^{t}=I$,

$$
A^{-1} A=I,\left(A^{-1} A\right)^{t}=A^{t}\left(A^{-1}\right)^{t}=I,
$$

Example 22

If $A=\left[\begin{array}{ll}4 & 1 \\ 3 & 1\end{array}\right]$, then it can be shown that $A^{-1}=\left[\begin{array}{rr}1 & -1 \\ -3 & 4\end{array}\right]$. Use this information to compute $\left(A^{t}\right)^{-1}$.

Solution

$$
\left(A^{t}\right)^{-1}=\left(A^{-1}\right)^{t}=\left[\begin{array}{rr}
1 & -1 \\
-3 & 4
\end{array}\right]^{t}=\left[\begin{array}{rr}
1 & -3 \\
-1 & 4
\end{array}\right]
$$

Theorem 2.6

Let $A X=B$ be a system of n linear equations in n variables.
If A^{-1} exists, the solution is unique and is given by $X=A^{-1} B$.

Proof

($X=A^{-1} B$ is a solution.)
Substitute $X=A^{-1} B$ into the matrix equation.

$$
A X=A\left(A^{-1} B\right)=\left(A A^{-1}\right) B=I_{n} B=B
$$

(The solution is unique.)
Let Y be any solution, thus $A Y=B$. Multiplying both sides of this equation by A^{-1} gives

$$
\begin{aligned}
A^{-1} A Y & =A^{-1} B \\
I_{n} Y & =A^{-1} B \\
Y & =A^{-1} B . \quad \text { Then } Y=X .
\end{aligned}
$$

Example 22

$$
x_{1}-x_{2}-2 x_{3}=1
$$

Solve the system of equations $2 x_{1}-3 x_{2}-5 x_{3}=3$

Solution

$$
-x_{1}+3 x_{2}+5 x_{3}=-2
$$

This system can be written in the following matrix form:

$$
\left[\begin{array}{rrr}
1 & -1 & -2 \\
2 & -3 & -5 \\
-1 & 3 & 5
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{r}
1 \\
3 \\
-2
\end{array}\right]
$$

If the matrix of coefficients is invertible, the unique solution is

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{rrr}
1 & -1 & -2 \\
2 & -3 & -5 \\
-1 & 3 & 5
\end{array}\right]^{-1}\left[\begin{array}{r}
1 \\
3 \\
-2
\end{array}\right]
$$

This inverse has already been found in Example 20. We get

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{rrr}
0 & 1 & 1 \\
5 & -3 & -1 \\
-3 & 2 & 1
\end{array}\right]\left[\begin{array}{r}
1 \\
3 \\
-2
\end{array}\right]=\left[\begin{array}{r}
1 \\
-2 \\
1
\end{array}\right]
$$

The unique solution is $x_{1}=1, x_{2}=-2, x_{3}=1$.

Elementary Matrices

Definition

An elementary matrix is one that can be obtained from the identity matrix I_{n} through a single elementary row operation.

Example 23

Elementary Matrices

- Elementary row operation
- Elementary matrix

Notes for elementary matrices

- Each elementary matrix is invertible.

Example 24

$$
\begin{aligned}
& I \underset{R 1+2 R 2}{\approx} E_{1} \Rightarrow E_{1} \underset{R 1-2 R 2}{\approx} I \text {, i.e., } E_{2} E_{1}=I \\
& I=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \quad E_{1}=\left[\begin{array}{lll}
1 & 2 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \quad E_{2}=\left[\begin{array}{ccc}
1 & -2 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

- If A and B are row equivalent matrices and A is invertible, then B is invertible.

Proof

If $A \approx \ldots \approx B$, then
$B=E_{n} \ldots E_{2} E_{1} A$ for some elementary matrices E_{n}, \ldots, E_{2} and E_{1}.
So $B^{-1}=\left(E_{n} \ldots E_{2} E_{1} A\right)^{-1}=A^{-1} E_{1}^{-1} E_{2}{ }^{-1} \ldots E_{n}^{-1}$.

Homework

- Exercises will be given by the teachers of the practical classes.

Exercise

If $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, show that $A^{-1}=\frac{1}{(a d-b c)}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$.

