Homework

Exercise 1: For $A \in M_n$ proof:

$$(a) ||| A^{2} ||| \le ||| A |||^{2}, ||| A^{p} ||| \le ||| A |||^{p}, p = 2,3,...$$

(b) if $A^{2} = A$ then $||| A ||| \ge 1$
(c) if A is invertible, then $||| A^{-1} ||| \ge \frac{||| I |||}{||| A |||}$
(d) $||| I ||| \ge 1.$

Homework

Exercise 2. Proof $n \|\cdot\|_{\infty}$ is a matrix norm, where *n* is the size of the matrix.

Exercise 3. The spectral norm $||| \cdot |||_2$ $||| A |||_2 = \max \{ \sqrt{\lambda} : \lambda \text{ is an eigenvalue of } A^* A \}$

is deduced by the l_2 norm.