

Направление подготовки бакалавров «Строительство»

Строительные материалы

Лихачев Владислав Александрович, к.х.н., доцент

Свойства строительных материалов

- Строительные материалы могут быть сыпучими (песок, цемент, строительные смеси), пористыми (бетон, кирпич, изделия из керамики, дерево), плотными (металл, пластмассы) и поэтому каждый материал имеет свои специфичные свойства, которые и определяют его применение.
- Познакомимся с основными свойствами строительных материалов (конгломератов)

Истинная плотность

Строительные материалы характеризуются тремя видами плотности: истинной, средней и насыпной.

- **Истинная плотность**. Масса единицы объема в абсолютно плотном состоянии. г/см³, кг/м³
- m масса образца материала, г;
- $V_a = \overline{V}_a$ $V_a = 0$ объем в абсолютно плотном состоянии (без пор), см³
- Для плотных материалов, таких как **металл, стекло** характерна только истинная плотность: физическая и строгая характеристика материала.
- Для других материалов характерно несколько видов плотности. Например истинная плотность цемента 3,05 – 3,15 г/см³, а его насыпная плотность всего 1.3 г/см³

Средняя плотность

- Средняя плотность характерна для пористых материалов, таких как бетон, керамика, газонаполненные пластмассы и т.д.
- Это масса единицы объема в естественном состоянии (вместе с порами).

•
$$\mathbf{Po} = \frac{m}{Ve}, \ \Gamma/\mathrm{cm}^3, \ \kappa\Gamma/\mathrm{m}^3$$

• V_e - объем материала в естественном состоянии (с порами)

Насыпная плотность

- **Насыпная плотность** характерна для сыпучих материалов (цемент, песок, гравий и т.д.)
- Насыпная плотность это масса (m) единицы объема просушенного свободно насыпанного материала (V_H) .

• Обозначение: $P_H = \frac{m_V}{V_H}$

• Размерность: $\Gamma/\text{см}^3$, $\kappa\Gamma/\text{м}^3$

Пористость

• Степень заполнения объема материала порами.

$$\Pi = \frac{P - Po}{P} \mathbf{100\%}$$

$$\Pi = \frac{V_{\pi}}{V_{e}} \mathbf{100}\%$$

где, Р – истинная плотность; Ро – средняя плотность

 $V_{\rm n}$ – объем пор; $V_{\rm e}$ - объем материала в естественном состоянии.

В зависимости от вида строительного материала величина пор может быть очень разной: от нескольких ангстрем (1 $A=10^{-10}$ м) до нескольких мм.

Влажность

• Содержание влаги в материале по отношению к массе сухого материала

• Wm=
$$\frac{m_1-m_2}{m_2}$$
100%

где, m_1 — масса материала в состоянии естественной влажности, г, кг;

• m₂ – масса материала, высушенного до постоянной массы, г, кг

Водопоглощение

• Способность материала поглощать и удерживать воду при контакте с ней.

$$\mathbf{W}_{\mathbf{m}} = \frac{\mathbf{m}_{\mathsf{H}} - \mathbf{m}_{\mathsf{c}}}{\mathbf{m}_{\mathsf{c}}} 100\%$$

- ты масса насыщенного водой материала, г;
- те масса сухого материала, г;

Водонепроницаемость

- Способность материала не пропускать воду под давлением. Используется прежде всего для характеристики бетона;
- Обозначение марок бетона по водонепроницаемости:

W2, ... W12

• Где, 2,...12 - величина одностороннего гидростатического давления, которое выдерживает образец бетона не пропуская воду.

Морозостойкость

- Свойство материала в насыщенном водой состоянии не разрушаться под действием многократного попеременного замораживания и оттаивания
- Обозначение марки материала по морозостойкости: **F50... F100**
- Где 50, 100 количество циклов замораживания-размораживания, которое выдерживает материал без заметной потери прочности.
- 1 цикл: 1 замораживание при 15...-20°C + 1 оттаивание в воде комнатной температуры.
- Материал выдержал испытания, если потеря прочности
 R = 5-25% (для разных материалов), потеря по массе (m) до 5%.

Прочность строительного материала

 Для большинства строительных материалов прежде всего оценивается их прочность на сжатие (бетон, кирпич, бут и т.д.).
 Прочность на сжатие характеризуется пределом прочности на сжатие:

$$R_{cж} = \frac{P}{F}$$
, кH/cm², кгс/cm², МПа (H·10⁶/ м²).

- где, Р разрушающее усилие, кН, кгс, Н (МПа);
- F площадь поперечного сечения стандартного образца, см², м²;

Прочность на изгиб

Прочность на изгиб характеристика балок и панелей перекрытий;

•
$$R_{M3\Gamma} = \frac{3Pl}{2bH^2}$$

- где, $R_{\text{изг}}$ -предел прочности при изгибе;
- Р разрушающее усилие, кН, кгс, Н:
- 1- расстояние между опорами, см;
- b и H размеры поперечного сечения образца, см, м.

Лля метаплов характерна прочность на растяжение

Износ

Способность материала сопротивляться воздействию истирания;

•
$$M_{\text{M3}} = \frac{m1-m2}{m1} 100\%$$

где, m_1 и m_2 - массы образца соответственно до и после испытания, г, кг.

Теплопроводность

- Важное свойство для всех материалов, особенно изоляционных;
- Теплопроводность свойство материала передавать тепло через свою толщу от одной поверхности к другой;

$$\lambda = \frac{Q a}{\tau S \Delta t}, BT/M^{0}C,$$

где, Q - количества тепла, Дж;

- а толщина слоя, м;
- т время, с;
- S площадь, м²;
- Δt разность температур, ${}^{0}C$

Тепловое расширение

- Свойство материала деформироваться (увеличиваться или уменьшаться в размере) при изменении температуры;
- Характеризуется двумя коэффициентами: ТКЛР, ТКОР
- ТКЛР температурный коэффициент линейного расширения;
- ТКОР температурный коэффициент объемного расширения;
- Коэффициенты показывают относительное удлинение размеров (объема) материала при изменении температуры.
- Размерность: ^оС⁻¹

Твердость

- Способность материала сопротивляться проникновению в него другого более твердого материала.
- Вид испытаний на твердость зависит от вида материала.
- Твердость **каменных материалов** оценивают по шкале твердости **Мооса** в баллах от 1 до 10: самый мягкий тальк (1), самый твердый алмаз (10).
- Твердость битума и полимерных материалов оценивается по глубине проникновения стальной иглы.
- Твердость **металлов** по **площади** отпечатка или по **глубине** отпечатка при вдавливании различных по виду твердых наконечников алмазного или стального (твердость по Бринеллю, Роквеллу и Виккерсу).

Механические характеристики металлов

- Металлы главный материал во многих областях промышленности. Они широко используются в строительстве и по свойствам существенно отличаются от других строительных материалов
- Познакомимся подробнее с основными свойствами металлов.

Механические характеристики металлов

- Металл хорошо работает на сжатие не разрушаясь и для металлических конструкций, создаваемых строителями наиболее важное свойство металла его прочность.
- Прочность металла зависит от условий эксплуатации и определяется целым рядом механических характеристик: предел текучести, предел прочности, ударная вязкость, трещиностойкость, предел усталости и т.д.
- Пластичность свойство металла очень важное при его обработке деформацией.
- Это способность металла принимать под действием нагрузки новую форму, не разрушаясь. Описывается <u>относительным</u> <u>удлинением</u> и <u>относительным сужением при разрыве</u>.

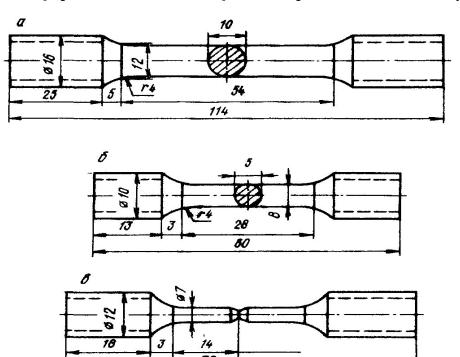
Механические свойства металлов

• Для строительной техники, связанной, например, с выбором грунта очень важное свойство металла — износостойкость.

Износостойкостью называется способность металла оказывать сопротивление изнашиванию. Описывается **величиной**, **обратной скорости изнашивания**.

• В машиностроении чаще всего определяется еще одно свойство металла — **твёрдость.**

Характеристика очень легко и быстро определяемая гостируемыми методами, часто непосредственно на деталях. Характеристика достаточно интегральная, т.к. позволяет предсказывать прочность, пластичность и износостойкость металла.


Испытания на статическую прочность

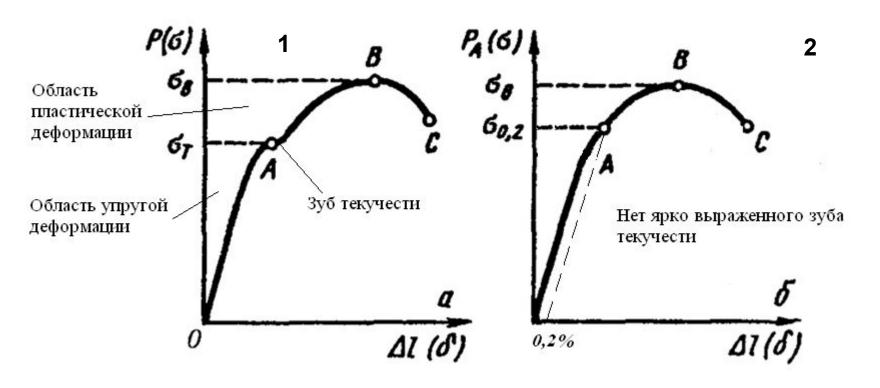
- Прочность металла в условиях статических нагрузок характерных для строительных металлоконструкций оценивается с помощью следующих механических характеристик:
- $\sigma_{\rm T}$ предела текучести;
- $\sigma_{0,2}$ условного предела текучести;
- σ_{R} предела прочности.
- Все эти характеристики определяются при испытаниях на разрыв образцов металлов на специальных разрывных машинах

Образцы для испытаний на разрыв

Образцы изготовляются в соответствии с ГОСТ и различаются по длине и сечению (в сечении образцы могут быть круглыми и прямоугольными).

Испытания на прочность при статических нагрузках

Прочность в условиях статических нагрузок определяется с помощью снятия кривых растяжения металла. Разрывная машина, увеличивая нагрузку на металл, одновременно фиксирует увеличение длины испытуемого образца.


На кривой растяжения можно выделить два основных участка:

- 1 область упругой деформации, на которой металл ведет себя, как резина (при снятии нагрузки он возвращается к исходной длине), эта область всегда линейна;
- 2. область пластической деформации (при снятии нагрузки в металле остается остаточное удлинение (как говорят металл потек). Область на кривой растяжения криволинейна.

Кривые растяжения

Кривые растяжения бывают двух видов: с четким переходом от упругой к пластической деформации через зуб текучести (кривая 1) и без четкого перехода (кривая 2).

Испытания на статическую прочность

На кривых растяжения 1-го вида напряжение, при котором наблюдается переход от упругой к пластической деформации, называется **пределом текучести** и обозначается σ_{T_i} кгс/мм², н/мм².

При снятии кривой растяжения 2-го вида вводится понятие условного предела текучести, который обозначается $\sigma_{0,2}$ $\sigma_{0,2}$ – условный предел текучести — нагрузка, которая оставляет

 $\sigma_{0,2}$ – условный предел текучести — нагрузка, которая оставляет остаточное удлинение равное 0,2% от первоначальной длины образца.

Для определения условного предела текучести на абсциссе откладывается удлинение равное 0,2% от первоначальной длины образца и проводится прямая **параллельная** области упругой деформации до пересечения с кривой растяжения, это пересечение и определяет величину условного предела текучести $\sigma_{0,2}$ кгс/мм², H/MM^2 .

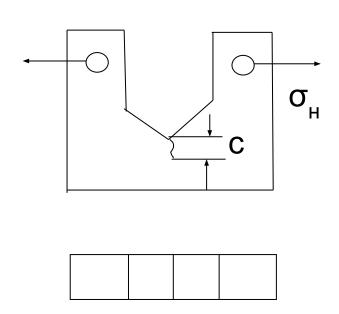
Механические характеристики металлов

- **σ**_т и **σ**_{0,2} Наиболее важные для строителей характеристики прочности металла, позволяющие определить **предельные эксплуатационные** нагрузки на металлоконструкцию, почему они и входят в обозначение строительных сталей.
- •С помощью кривой растяжения можно определить еще одну характеристику прочности металла σ_B . Напряжение, соответствующее наибольшей нагрузке, предшествующей разрушению, называется *пределом прочности* σ_B *или временным сопротивлением разрыву*.

Пластичность металлов

- С помощью кривых растяжения определяются также характеристики пластичности металлов:
- Относительное удлинение- δ
- $\delta = \text{Lkoh} \text{Lhay} / \text{Lhay} 100\%;$

Lкон фиксируется в момент разрыва образца и равняется Lкон = Lнач + Δ L

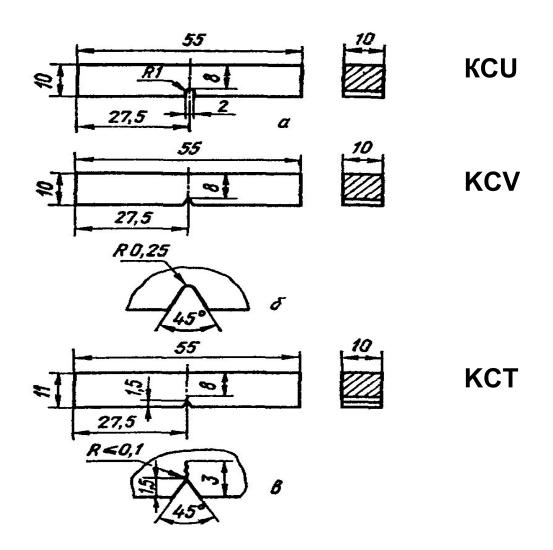

- Относительное сужение Ч
- $\Psi = \text{Fhay} \text{Fkoh} / \text{Fhay } 100\%;$

Fкон – конечное сечение образца фиксируется после его разрыва в области шейки.

Трещиностойкость Коэффициент интенсивности напряжений в вершине трещины.

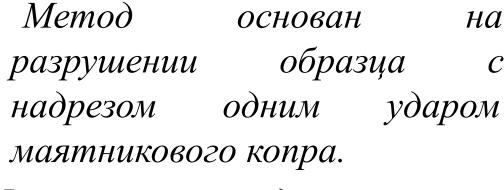
Трещиностойкость K_{1c} характеризует прочность металла при наличии на нем дефекта.

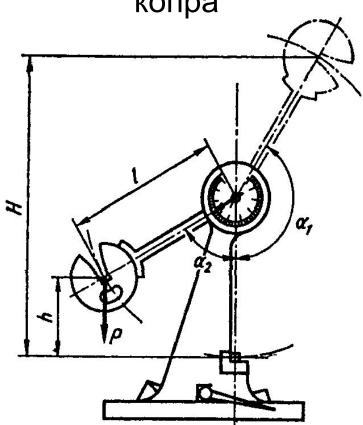
Испытания проводятся на образцах с трещиной $K_{1c} = Y \sigma_H \sqrt{\pi c}$, кг/мм² м¹/2 Y -коэффициент, учитывающий форму и размеры образца для испытаний $\sigma_H -$ нагрузка, вызывающая разрыв образца с - длина дефекта (трещины)


Прочность металла в условиях ударных нагрузок

- Прочность металлов в условиях ударных нагрузок характеризуется ударной вязкостью, которая определяется работой (Дж/м²), затраченной на разрушение образца при ударе.
- Ударная вязкость обозначается тремя буквами КСU, КСV, КСТ, где буквы U,V,Т указывают на вид образца использованного при испытаниях.

Виды образцов при испытаниях на ударную вязкость

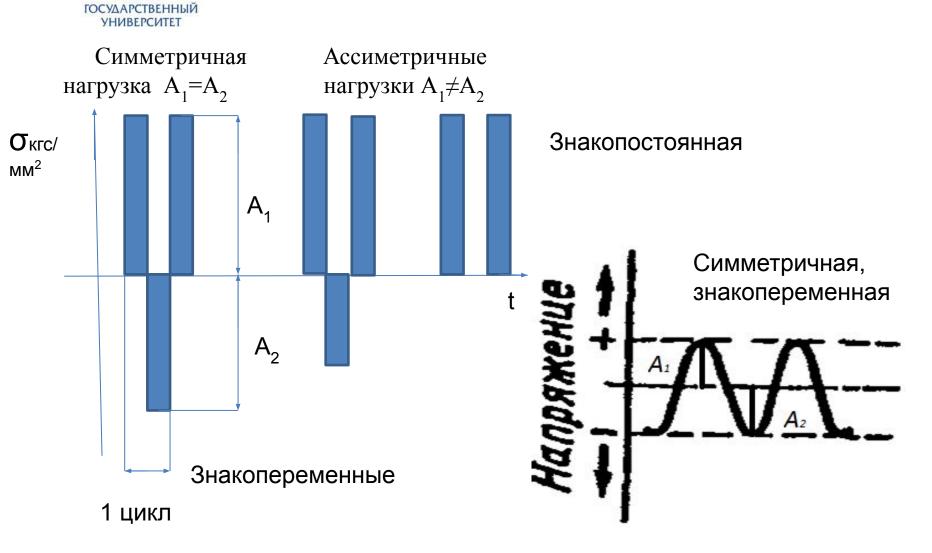

Образцы отличаются видом концентратора напряжений.



Динамические испытания на ударную вязкость

Схема маятникового копра

Испытания проводятся по ГОСТ 9454-78 на маятниковом копре.



Прочность металла при наложении динамических переменных нагрузок

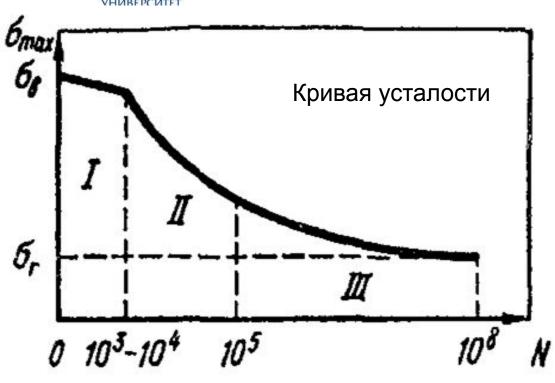
- При наложении переменных нагрузок металл со временем устает.
- Усталость представляет собой процесс постепенного накопления повреждений в металле под действием переменных нагрузок, приводящих к образованию и развитию усталостных трещин.
- За счет появления усталостных трещин прочность металла со временем действия переменных нагрузок уменьшается.

Виды переменных нагрузок

Прочность металла при наложении динамических переменных нагрузок

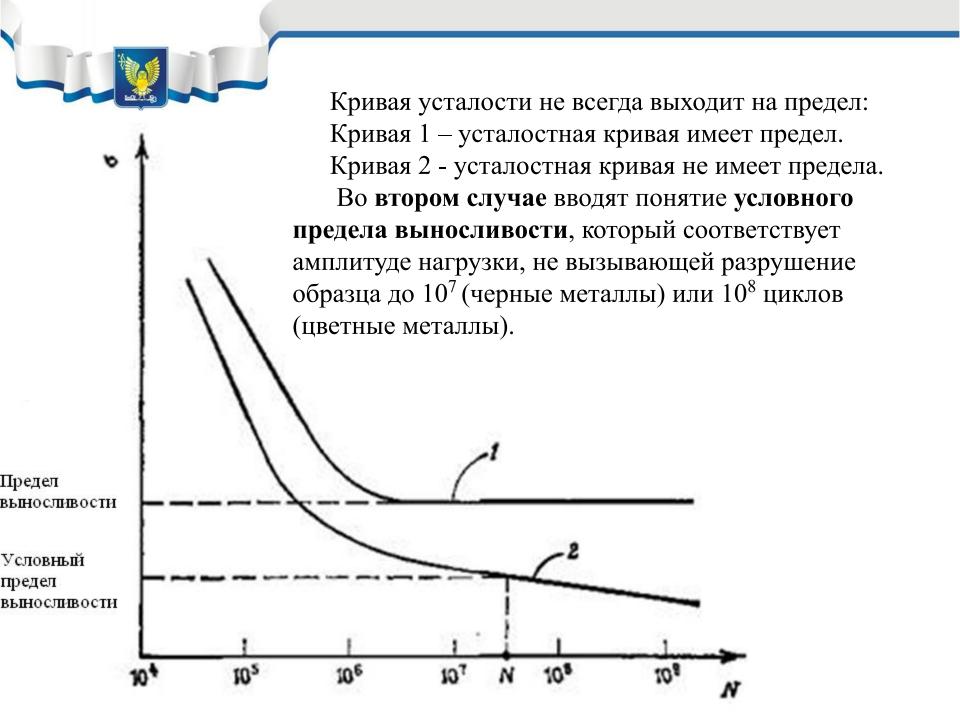
- Оценивается с помощью **предела усталости** или **предела выносливости**:
- Обозначение предела выносливости (усталости)
- О_R- при асимметричной нагрузке;
- O₋₁- при симметричной нагрузке;
- Предел выносливости определяется из кривой усталости металла, для снятия которой необходимо иметь не менее 10

Усталостные испытания


При снятии кривой усталости на 1-ый образец накладывается переменная нагрузка с амплитудой немного ниже предела прочности металла ($\sigma_{\rm B}$) и фиксируется количество циклов нагрузки (N), которое выдержит образец до разрыва.

На следующие образцы накладывается нагрузка с **меньшей амплитудой** и опять идет испытание образца до разрыва.

Таким образом, снимается кривая усталости в координатах: амплитуда нагрузки - количество циклов, которые выдерживает образец до разрыва.



Усталостные испытания

σ _В – предел прочности металла

За предел выносливости принимают амплитуду нагрузки, не вызывающую разрыва образца при любом количестве циклов и обозначают σ_{-1} при симметричной нагрузке и σ_R при асимметричной нагрузке.

Испытания на твердость металла

ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

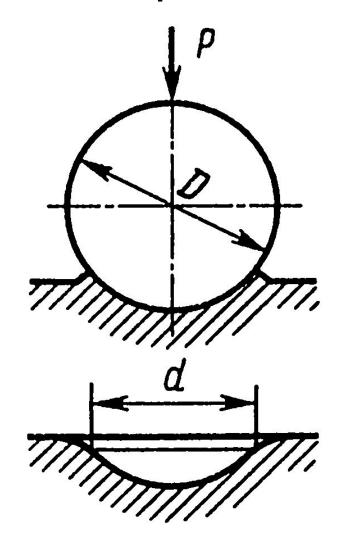
Твёрдость — свойство металла оказывать сопротивление пластической деформации при контактном взаимодействии.

Определяется вдавливанием **твёрдого наконечника** определенной нагрузкой. Твёрдость фиксируется по **площади** или **глубине** отпечатка.

Виды испытания на твёрдость отличаются: материалом размерами и формой наконечника и прикладываемой нагрузкой.

- Метод по Бринеллю (НВ);
- Метод по Роквеллу (HR);
- Метод по Виккерсу (HV);
- Испытания на микротвёрдость.

Методы определения твердости


ВЯТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Испытания по Бринеллю.

Используется для оценки твёрдости **цветных** металлов и **незакаленных** сталей **в цехе**.

Наконечник – стальной закаленный шарик диаметром 10; 5; 2,5 мм.

Нагрузка задается в кг (187,5 – 3000) кгс или в H,. с помощью машины ТШ-2 (Бринелль)

Если F (P) в H, то
$$HB = \frac{0,102 \cdot 2F (P)}{\pi D (D - \sqrt{D^2 - d^2})}$$

Определение твердости по Бринеллю

- 1.Диаметр шарика выбирается исходя из толщины детали.
- 2.Величина нагрузки исходя из диаметра шарика и предполагаемой твердости материала.
- 3.Стандартные испытания твердости отожженных сталей проводятся шариком 10 мм, при нагрузке P=3000 кг, и времени наложения нагрузки 15 сек 4. Диаметр полученного отпечатка определяется с помощью небольшого микроскопа МПБ,

прикладываемого к прибору Бринелля.

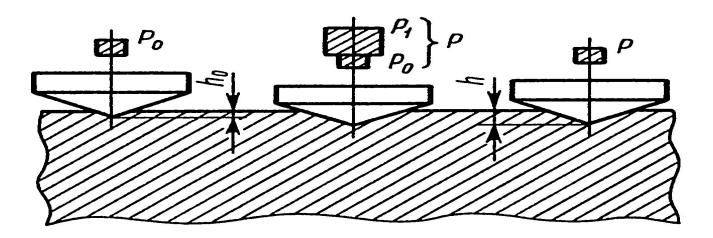
Достоинства и недостатки испытаний по Бринеллю

Достоинства: заводской метод испытания непосредственно на деталях; точность измерения не зависит от посторонних веществ на поверхности (например, масла) и шероховатости.

Недостатки: ограниченность применения (до 420НВ), велик отпечаток (портится деталь), нельзя измерять твердость тонких листовых материалов.

Испытания по Роквеллу

Наконечник — алмазный конус с углом при вершине 120°, или стальной закаленный шарик диаметром 1,58 мм;


Испытания по трем шкалам:

HRC – алмазный конус, нагрузка 150 кгс;

HRA – алмазный конус, нагрузка 60 кгс;

HRB – стальной закаленный шарик, нагрузка 100 кгс;

Нагрузка задаётся с помощью прибора ТК-2. И накладывается в два приема: вначале предварительная 10 кг, затем окончательная.

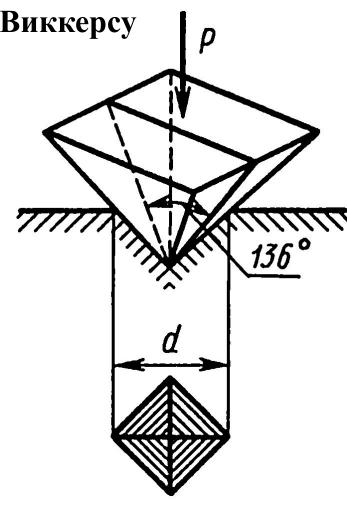
Испытания по Роквеллу

- Глубина отпечатка контролируется с помощью стрелочного механизма часового типа. Твердость по шкале С определяется по формуле:
- HRC = 100-L, где L = (h-ho)/0,002мм и выражается в условных единицах (55HRC закаленная сталь, 32HRC отожженная сталь)
- **HRC** наиболее употребляемая шкала используется для всех материалов, наконечник алмазный конус.
- **HRA** шкала для твердых и хрупких материалов, наконечник алмазный конус;
- **HRB** шкала для мягких материалов, наконечник стальной закаленный шарик.

Достоинства и недостатки испытаний по Роквеллу

- Достоинства: самый быстрый и цеховой метод испытаний; не зависит от шероховатости; отпечаток небольшой меньше портиться деталь, пригоден для испытаний любых по твердости материалов.
- **Недостатки**: Нельзя проводить испытания тонких материалов, твердость определяется в условных единицах.

Испытания по Виккерсу


Наконечник — алмазная пирамидка с квадратным основанием и углом при вершине 136°

Нагрузка 1 - 120 кгс. Нагрузка задается с помощью рычажного механизма $T\Pi$ -2.

Диаметр диагоналей отпечатка измеряется с помощью встроенного в прибор микроскопа.

Cт андартные испытания P = 30 кгс, $\tau = 15$ сек.

$$HV = 1.854P/d^{2} \kappa c/mm^{2}$$

$$HV = 0.189 \frac{F}{d^2}$$
H/ MM²

Достоинства и недостатки испытаний по Виккерсу

- Достоинства метода:
- используется для оценки любых по твердости материалов;
- может быть использован для оценки твердости листовых материалов.
- **Недостатки**: лабораторный метод, испытания проводятся на образцах с специально подготовленной поверхностью.