# ПЕРСПЕКТИВЫ ИСПОЛЬЗОВАНИЯ ЛИЧИНОК МУЧНОГО ХРУЩАКА ДЛЯ ПЕРЕРАБОТКИ ПЛАСТИКА, ПЕНОПЛАСТА И ПОЛИЭТИЛЕНА

Выполнил:

Семёнов Александр Игоревич

Ученик 11 класса

Руководитель:

Астошова Мария Александровна

Преподаватель биологии и экологии

Консультант:

Кандидат биологических наук,

Руководитель лаборатории

биохимии почвенно-растительных

систем

Юрий Викторович Хомяков



#### АКТУАЛЬНОСТЬ



Пластик разлагается до 500 лет



#### ЖИВЫЕ СУЩЕСТВА, КОТОРЫЕ ГОТОВЫ УТИЛИЗИРОВАТЬ ОТХОДЫ



Восковая моль (Galleria mellonella)



Мучная личинка (Tribolium Confusum)



Aspergillus tubingensis

#### Цель

Разработать биологический способ переработки пенопласта, полиэтилена и пластика благодаря предполагаемому свойству личинок мучного хрущака усваивать и утилизировать отходы

#### Задачи

- 1. Изучить способы утилизации пластика.
- 2. Экспериментально опробовать новый биологический способ утилизации пластика.
- 3. Проанализировать, как сказывается употребление в пищу полиэтилена и пенопласта на жизнедеятельности личинок мучного хрущака.
- 4. Зафиксировать количество съеденного материала в течение двух недель.
- 5. Определить содержание в отходах жизнедеятельности личинок пенопласта и процент содержания в нем различных микроэлементов.
  - 6. Выявить практическую пользу

### **МУЧНОЙ ХРУЩАК**







Жук Личинки Куколка

#### ПОКУПКА ЛИЧИНОК МУЧНОГО ХРУЩАКА



#### НАЧАЛО ЭКСПЕРИМЕНТА

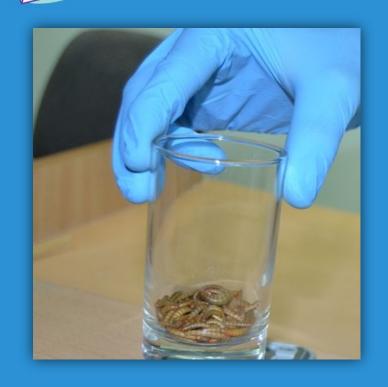
- Пересчёт числа личинок
- Взвешивание личинок
- Распределение личинок по колбам
















## ПРОВЕДЕНИЕ ДВУХ ИЗМЕРЕНИЙ ПОСЛЕ ПЕРВОЙ И ВТОРОЙ НЕДЕЛИ



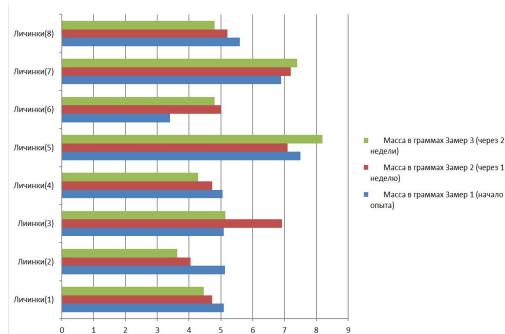


Образовавшиеся куколки

100 личинок в открытой ёмкости

Измерение массы личинок

#### Полистирольный Овсянка Полиэтиленовый пенопласт пенопласт Масса в граммах Замер 1 (начало опыта) Масса в граммах Замер 2 (через 1 неделю) Масса в граммах Замер 3 (через 2 недели) Неплотный полиэтилен Плотный Полиэтилен Масса в граммах Замер 1 (начало опыта) Масса в граммах Замер 2 (через 1 неделю) Масса в граммах Замер 3 (через 2 нелели) йогурта(полистирол) высокой плотности(низкого Масса в граммах Замер 1 (начало опыта) Масса в граммах Замер 2 (через 1 неделю) Масса в граммах Замер 3 (через 2 недели)


#### ОКОНЧАТЕЛЬНЫЕ РЕЗУЛЬТАТЫ ВЗВЕШИВАНИЯ

|                                                                                | Масса в граммах           |                             |                             |
|--------------------------------------------------------------------------------|---------------------------|-----------------------------|-----------------------------|
| Питание                                                                        | Замер 1<br>(начало опыта) | Замер 2<br>(через 1 неделю) | Замер 3<br>(через 2 недели) |
| Полистирольный пенопласт                                                       | 1,200                     | 0,902                       | 0,321                       |
| Овсянка                                                                        | 8,400                     | 2,800                       | 1,249                       |
| Полиэтиленовый пенопласт                                                       | 0,904                     | 0,666                       | 0,312                       |
| Неплотный полиэтилен                                                           | 0,013                     | 0,010                       | 0,006                       |
| Плотный<br>Полиэтилен                                                          | 0,046                     | 0,041                       | 0,037                       |
| Тонкий пластик упаковки<br>йогурта(полистирол)                                 | 0,200                     | 0,155                       | 0,087                       |
| Тонкий пластик упаковки сливок(полиэтилен высокой плотности(низкого давления)) | 0,276                     | 0,255                       | 0,212                       |

#### по таблице видно, что масса личинок

#### **МЕНЯЕТСЯ**

| Масса в граммах |                |                  |                  |  |
|-----------------|----------------|------------------|------------------|--|
|                 | Замер 1        | Замер 2          | Замер 3          |  |
|                 | (начало опыта) | (через 1 неделю) | (через 2 недели) |  |
| Личинки(1)      | 5,092          | 4,732            | 4,458            |  |
| Лиинки(2)       | 5,132          | 4,045            | 3,636            |  |
| Лиинки(3)       | 5,088          | 6,924            | 5,147            |  |
| Личинки(4)      | 5,057          | 4,728            | 4,288            |  |
| Личинки(5)      | 7,5            | 7,1              | 8,2              |  |
| Личинки(6)      | 3,4            | 5                | 4,8              |  |
| Личинки(7)      | 6,9            | 7,2              | 7,4              |  |
| Личинки(8)      | 5,6            | 5,2              | 4,8              |  |





## ПОСЛЕ ВЗВЕШИВАНИЯ Я УДОСТОВЕРИЛСЯ, ЧТО МАССА ПЛАСТИКА, ПОЛИЭТИЛЕНА И ПЕНОПЛАСТА УМЕНЬШИЛАСЬ

#### Количество съеденного пластика



#### Масса в грамах норма температуры ■ Масса в грамах увеличение температуры Тонкий пластик упаковки Полиэтиленовый сливок(полиэтилен высокой плотности (низкого давления) ■ Масса в грамах норма температуры Масса в грамах увеличение температуры Тонкий пластик упаковки Неплотный полиэтилен Плотный полиэтилен йогурта(полистирол) ■ Масса в грамах норма температуры ■ Масса в грамах увеличение температуры

## ИЗМЕНЕНИЕ СКОРОСТИ УТИЛИЗАЦИИ ПЛАСТИКА С УВЕЛИЧЕНИЕМ ТЕМПЕРАТУРЫ

| Масса в граммах                                                                      |                   |                        |  |  |
|--------------------------------------------------------------------------------------|-------------------|------------------------|--|--|
| Питание                                                                              | норма температуры | увеличение температуры |  |  |
| Полистирольный пенопласт                                                             | 0,321             | 0,256                  |  |  |
| Овсянка                                                                              | 1,249             | 1,153                  |  |  |
| Полиэтиленовый пенопласт                                                             | 0,312             | 0,179                  |  |  |
| Неплотный полиэтилен                                                                 | 0,006             | 0,002                  |  |  |
| Плотный                                                                              |                   |                        |  |  |
| Полиэтилен                                                                           | 0,037             | 0,019                  |  |  |
| Тонкий пластик упаковки<br>йогурта(полистирол)                                       | 0,087             | 0,038                  |  |  |
| Тонкий пластик упаковки<br>сливок(полиэтилен высокой<br>плотности(низкого давления)) | 0,212             | 0,174                  |  |  |

## ВЫЯВЛЕНИЕ ОСТАТКОВ ПЛАСТИКА ПОД МИКРОСКОПОМ

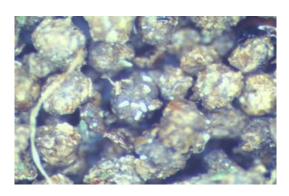



Рисунок. Проба помета хрущей № 1 увеличенная под микроскопом.

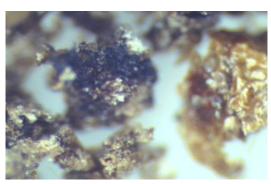



Рисунок. Проба помета хрущей № 4 увеличенная под микроскопом.

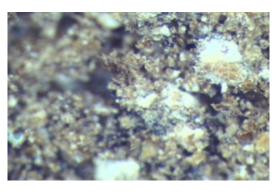



Рисунок. Проба помета хрущей № 2 увеличенная под микроскопом.

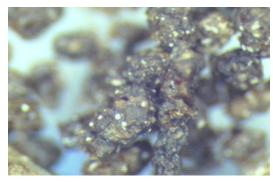



Рисунок. Проба помета хрущей № 5 увеличенная под микроскопом.

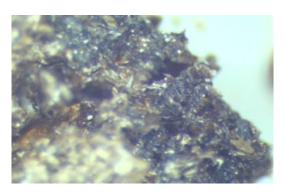



Рисунок. Проба помета хрущей № 3 увеличенная под микроскопом.

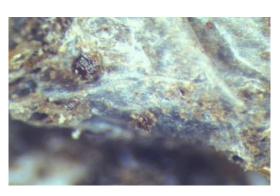



Рисунок. Проба помета хрущей № 6 увеличенная под микроскопом.

#### ДЛЯ ПОСЛЕДУЮЩЕГО ИСПОЛЬЗОВАНИЯ ЭКСКРЕМЕНТОВ В КАЧЕСТВЕ УДОБРЕНИЙ БЫЛО ОПРЕДЕЛЕНО ПРОЦЕНТНОЕ СОДЕРЖАНИЕ АЗОТА, ФОСФОРА И КАЛИЯ

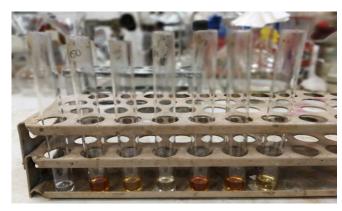



Рисунок. Пробы помета хрущей в процессе кислотного разложения для определения азота, фосфора и калия



Рисунок. Начало процесса окрашивания проб для определения общего азота (через 1 минуту после внесения окрашивающего реактива)

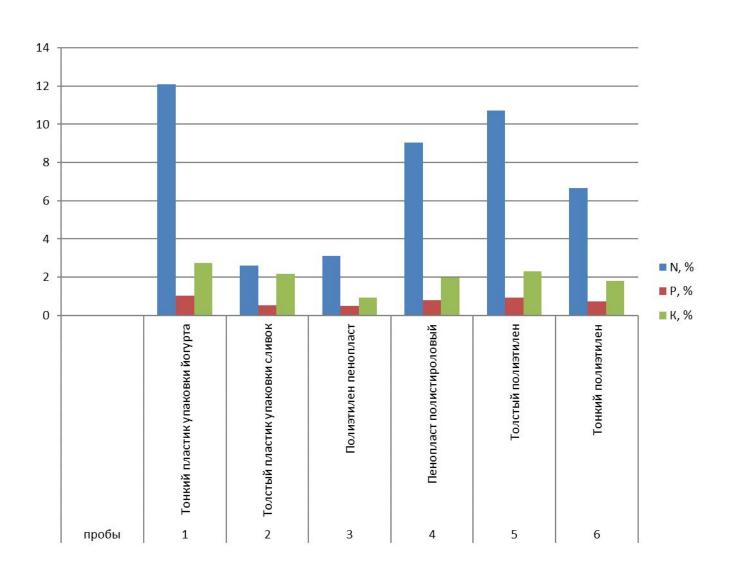



Рисунок.
Пробы помета хрущей после кислотного разложения, количественно перенесенные в мерные колбы на 100 мл. (Пробы подготовлены для химического анализа)



Рисунок. Окрашенные пробы для определения общего азота (через 1 час после внесения окрашивающего реактива). Пробы расставлены по порядку с 1 по 6

#### ПРОЦЕНТ СОДЕРЖАНИЯ ФОСФОРА, АЗОТА И КАЛИЯ



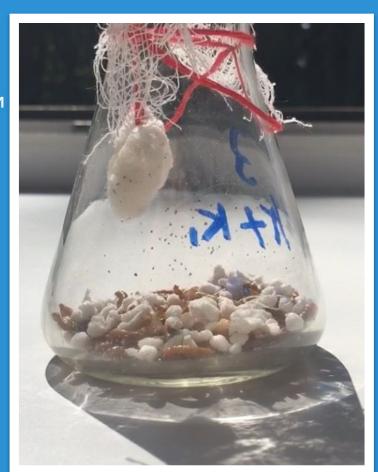






#### Посадк










#### выводы

- Существует несколько способов утилизации пластика: сжигание, гранулирование, химический способ, пиролиз. Однако у всех вышеперечисленных способов есть существенные недостатки токсичные выделения и чрезмерные финансовые затраты.
- Был экспериментально опробован новый биологический способ утилизации пластика. В течение двух недель личинки мучного хрущака питались полиэтиленом, пенопластом и пластика. Оказалось личинки способны перерабатывать пластик, но в очень малом объеме.
- Употребление пластика не повлияло на жизнедеятельность личинок мучного хрущака: в жизненном цикле личинок всё также присутствуют куколка и жук.
  - Экскременты можно использовать в качестве азотных
- Лучше всего черви утилизи ДОБРЕНИЙ нкий полиэтилен.
- В лабораторных условиях было выявлено, что личинки перерабатывают пластик, но в очень малых объемах, а процент содержания азота в кале личинок, поедающих тонкий пластик упаковки йогурта и тонкий полиэтилен позволяет использовать их экскременты в качестве удобрений.



В дальнейшем личинку мучного хрущака можно использовать для получения чистого фермента.

В дальнейшем экскременты личинок мучного хрущака можно использовать в качестве удобрений.

