
Database Management
Systems.

Lecture 2

Content:

▪ Intro to SQL DDL statements;

▪ Managing Tables;

▪ Constraints;

▪ Primary and Foreign Keys.

SQL definition:

▪ Structured Query Language(SQL) as we all know is the
database language using which we can perform certain
operations on the existing database and, we can use this
language to create a database.

▪ SQL commands are mainly categorized into five categories as:

▪ DDL – Data Definition Language;

▪ DML – Data Manipulation Language;

▪ DCL – Data Control Language;

▪ DQL – Data Query Language;

▪ TCL - Transaction Control Language;

SQL
Commands

DDL (Data
Definition
Language):

▪ DDL or Data Definition Language consists of the SQL
commands that can be used to define the database
schema.

▪ DDL is a set of SQL commands used to create, modify,
and delete database structures but not data.

DDL
Commands:

▪ CREATE: This command is used to create the database
or its objects (like table, index, function, views, store
procedure, and triggers).

▪ DROP: This command is used to delete objects from the
database.

▪ ALTER: This is used to alter the structure of the
database.

▪ TRUNCATE: This is used to remove all records from a
table, including all spaces allocated for the records are
removed.

▪ COMMENT: This is used to add comments to the data
dictionary.

▪ RENAME: This is used to rename an object existing in
the database.

CREATE
syntax:

▪ There are two CREATE statements available in SQL:

▪ CREATE DATABASE:

▪ CREATE DATABASE
database_name;

▪ CREATE TABLE:

▪ CREATE TABLE table_name (
column1 data_type(size),
column2 data_type(size),
column3 data_type(size),
....);

Data Types:

▪ PostgreSQL supports the following data types:

▪ Boolean

▪ Character types such as char, varchar, and text.

▪ Numeric types such as integer, float and numeric.

▪ Temporal types such as date, time, timestamp.

▪ UUID for storing Universally Unique Identifiers

▪ Array for storing array strings, numbers, etc.

▪ JSON stores JSON data

▪ hstore stores key-value pair

▪ Special types such as network address and geometric
data.

PostgreSQL
Boolean:

▪ PostgreSQL supports a single Boolean data type:

▪ BOOLEAN that can have three values:
true, false and NULL.

▪ PostgreSQL uses one byte for storing a Boolean value in
the database.

▪ The BOOLEAN can be abbreviated as BOOL.

▪ In standard SQL, a Boolean value can be TRUE, FALSE,
or NULL. However, PostgreSQL is quite flexible when
dealing with TRUE and FALSE values.

▪ The following table shows the valid literal values
for TRUE and FALSE in PostgreSQL.

PostgreSQL
Character

Types:

▪ Both CHAR(n) and VARCHAR(n) can store up to n characters. If you try
to store a string that has more than n characters, PostgreSQL will issue
an error.

▪ However, one exception is that if the excessive characters are all spaces,
PostgreSQL truncates the spaces to the maximum length (n) and stores
the characters.

▪ The TEXT data type can store a string with unlimited length.

▪ If you do not specify the n integer for the VARCHAR data type, it
behaves like the TEXT datatype. The performance of
the VARCHAR (without the size n) and TEXT are the same.

▪ The only advantage of specifying the length specifier for
the VARCHAR data type is that PostgreSQL will issue an error if you
attempt to insert a string that has more than n characters into
the VARCHAR(n) column.

▪ Unlike VARCHAR, The CHARACTER or CHAR without the length
specifier (n) is the same as the CHARACTER(1) or CHAR(1).

▪ Different from other database systems, in PostgreSQL, there is no
performance difference among three character types.

▪ In most cases, you should use TEXT or VARCHAR. And you use
the VARCHAR(n) when you want PostgreSQL to check for the length.

PostgreSQL
Integer Data

Types:

▪ To store the whole numbers in PostgreSQL, you use one
of the following integer types: SMALLINT, INTEGER,
and BIGINT.

SERIAL and
AUTOINCREM

ENT:

▪ In PostgreSQL, a sequence is a special kind of database object
that generates a sequence of integers. A sequence is often
used as the primary key column in a table.

▪ When creating a new table, the sequence can be created
through the SERIAL pseudo-type as follows:

▪ By assigning the SERIAL pseudo-type to the id column,
PostgreSQL performs the following:

▪ First, create a sequence object and set the next value
generated by the sequence as the default value for the column.

▪ Second, add a NOT NULL constraint to the id column
because a sequence always generates an integer, which is a
non-null value.

▪ Third, assign the owner of the sequence to the id column; as
a result, the sequence object is deleted when the id column or
table is dropped

PostgreSQL
NUMERIC

Type:

▪ The NUMERIC type can store numbers with a lot of digits. Typically, you use
the NUMERIC type for numbers that require exactness such as monetary amounts or
quantities.

▪ The following illustrate the syntax of the NUMERIC type:

▪ In this syntax, the precision is the total number of digits and the scale is the number
of digits in the fraction part. For example, the number 1234.567 has the
precision 7 and scale 3.

▪ The NUMERIC type can hold a value up to 131,072 digits before the decimal
point 16,383 digits after the decimal point.

▪ The scale of the NUMERIC type can be zero or positive. The following shows the
syntax of NUMERIC type with scale zero:

▪ If you omit both precision and scale, you can store any precision and scale up to the
limit of the precision and scale mentioned above.

▪ If precision is not required, you should not use the NUMERIC type because
calculations on NUMERIC values are typically slower than integers, floats,
and double precisions.

ALTER syntax:

▪ ALTER TABLE is used to add, delete/drop or modify columns in
the existing table. It is also used to add and drop various
constraints on the existing table.

▪ ALTER TABLE - ADD is used to add columns or constraints into the
existing table:

▪ALTER TABLE table_name
ADD(Columnname_1 datatype,

 Columnname_2 datatype,
 …
 Columnname_n datatype);

▪ ALTER TABLE - DROP is used to drop column in a table.
Deleting the unwanted columns from the table:

▪ ALTER TABLE table_name DROP COLUMN column_name;

DROP vs
TRUNCATE:

▪ DROP is used to delete a whole database or just a table.

▪ The DROP statement destroys the objects like an existing
database, table, index, or view.

▪ DROP object object_name;

▪ TRUNCATE statement is used to quickly delete all data from
large tables.

▪ The TRUNCATE TABLE statement is logically (though not
physically) equivalent to the DELETE FROM statement
(without a WHERE clause).

▪ TRUNCATE TABLE table_name;

RENAME
syntax:

▪ Sometimes we may want to rename our table to give it a more
relevant name. For this purpose, we can use ALTER TABLE to
rename the name of table.

 ALTER TABLE table_name

 RENAME TO new_table_name;

or (if we want to change column name):

 ALTER TABLE table_name

 RENAME COLUMN old_column_name TO

new_column_name;

COMMENT
syntax:

▪ COMMENT is used to store a comment about database
object.

▪ Only one comment string is stored for each object, so to
modify a comment, issue a new COMMENT command for the
same object.

▪ Comments are stored in data dictionary.

▪ Comments are automatically dropped when their object is
dropped.

▪ COMMENT ON object object_name IS ‘some text’;

Constraints:

▪ Constraints are the rules enforced on data columns on
table. These are used to prevent invalid data from being
entered into the database. This ensures the accuracy and
reliability of the data in the database.

▪ Constraints could be column level or table level.

▪ The following are commonly used constraints available in PostgreSQL:

▪ NOT NULL Constraint − Ensures that a column cannot have NULL value.

▪ UNIQUE Constraint − Ensures that all values in a column are different.

▪ PRIMARY Key − Uniquely identifies each row/record in a database
table.

▪ FOREIGN Key − Constrains data based on columns in other tables.

NOT NULL:

▪ By default, a column can hold NULL values.

▪ If you do not want a column to have a NULL value, then you need to
define such constraint on this column specifying that NULL is now
not allowed for that column.

▪ A NOT NULL constraint is always written as a column constraint.

▪ To drop NOT NULL constraint:

▪ ALTER TABLE table_name ALTER COLUMN column_name
DROP NOT NULL;

▪ To add NOT NULL constraint:

▪ ALTER TABLE table_name ALTER COLUMN column_name
SET NOT NULL;

UNIQUE

▪ The UNIQUE Constraint prevents two records from having
identical values in a particular column.

▪ To add UNIQUE constraint on a column:

▪ ALTER TABLE table_name ADD CONSTRAINT
constraint_name UNIQUE (column_name);

▪ To add UNIQUE constraint on multiple columns (using
index):

▪ CREATE UNIQUE INDEX index_name ON table_name
(column1, column2);

▪ To drop UNIQUE constraint:

▪ ALTER TABLE table_name DROP CONSTRAINT
constraint_name;

PRIMARY KEY

▪ The PRIMARY KEY constraint uniquely identifies each
record in a database table. We use them to refer to table
rows.

▪ A primary key is a field in a table, which uniquely identifies
each row/record in a database table.

▪ Primary keys must contain UNIQUE values. A primary key
column cannot have NULL values.

▪ There can be more UNIQUE or NOT NULL columns, but only
one primary key in a table.

▪ When multiple fields are used as a primary key, they are
called a composite key.

CREATE TABLE TABLE (

column_1 data_type PRIMARY KEY,

column_2 data_type,

…);

FOREIGN KEY: [CONSTRAINT fk_name]

FOREIGN KEY(fk_columns) REFERENCES
parent_table(parent_key_columns)

[ON DELETE delete_action]

[ON UPDATE update_action]

▪ A foreign key constraint specifies that the values in a column
(or a group of columns) must match the values appearing in
some row of another table.

▪ We say this maintains the referential integrity between two
related tables.

▪ They are called foreign keys because the constraints are
foreign; that is, outside the table.

▪ Foreign keys are sometimes called a referencing key.

ALTER TABLE child_table ADD

CONSTRAINT constraint_name

FOREIGN KEY (fk_columns)

REFERENCES parent_table

(parent_key_columns);

