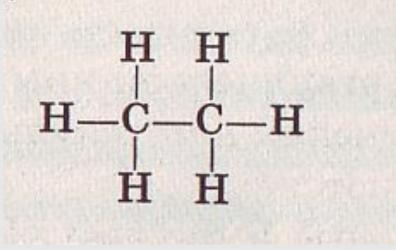

Основные положения теории Бутлерова


Бутлеров

Александр Михайлович Бутлеров (3 сентября 1828, – 5 августа 1886)
 – русский химик, создатель теории химического строения органических веществ, родоначальник «бутлеровской школы» русских химиков, учёный, общественный деятель, ректор Императорского Казанского университета в 1860-1863 годах.

1. Атомы в молекулах соединены друг с другом в определенной последовательности согласно их валентностям.

Последовательность межатомных связей в молекуле называется ее химическим строением и отражается одной структурной формулой (формулой строения).

2. Свойства веществ зависят не только от того какие атомы и сколько их входит в состав молекул, но и от порядка соединения атомов в молекулах.

Данное положение теории объясняет явление изомерии. Изомерия-явление, заключающееся в существовании нескольких соединений, имеющих один и тот же состав и одну и ту же молекулярную массу, но разное строение

монекул.

1 1

H-C-O-C-H

1 1

H H

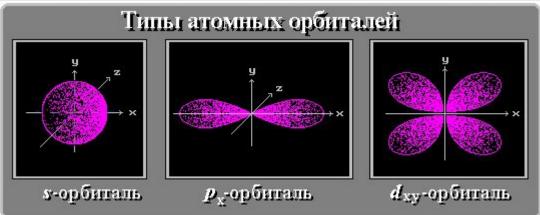
H H

H H

H H

СН3-О-СН3(диметиловый эфир)

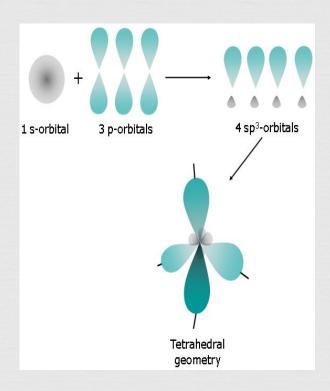
3.По свойствам данного вещества можно определить строение его молекулы, а по строению молекулы можно предугадать его свойства.


Физические и химические свойства веществ зависят не только от их качественного и количественного состава, но и от строения молекул. Это значит, что вещества обладают одинаковой молекулярной формулой, но имеют разные свойства

4.Атомы и группы атомов в молекулах веществ взаимно влияют друг на друга. Свойства атомов зависят не только от их природы, но и от окружения.

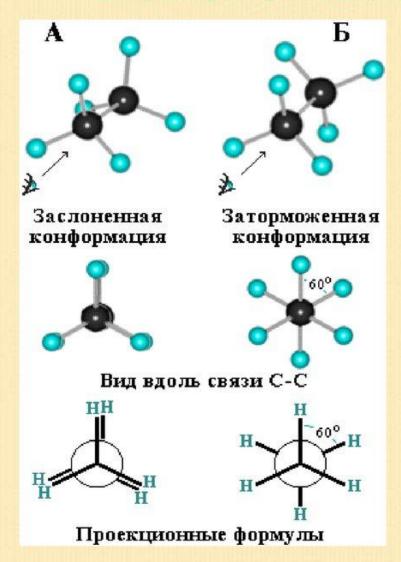
Так в молекуле уксусной кислоты СН3СООН атом водорода в группе СООН обладает кислотными свойствами и может отщепляться в водном растворе в виде катиона водорода, а атом водорода в группе СН3 прочно связан с атомом углерода и не обладает кислотными свойствами.

Атомная орбиталь — одноэлектронная волновая функция, полученная решением уравнения Шрёдингера для данного атома, задаётся главным n, орбитальным l и магнитным m квантовыми числами. МО) - одноэлект-ронная многоцентровая волновая функция, описывающая состояние отд. электрона молекулы, движущегося в усреднённом поле остальных электронов и в поле её ядерного остова. МО включает пространственную j(r) и спиновую q(sz)компоненты и часто наз. спин-


орбиталі

Электронная пара, образующая связь, может образоваться за счет неспаренных электронов, имеющихся в невозбужденных атомах. 2) Ковалентные связи могут образовываться за счет спаренных электронов, имеющихся на внешнем электронном слое атома. В этом случае второй атом должен иметь на внешнем слое свободную орбиталь.

Гибридизация (химия) — специфическое взаимодействие атомных орбиталей в молекулах.


Явление изомерии – существование нескольких различных веществ, которым соответствует одна и та же молекулярная формула. эти вещ называют изомерами. Виды изомерии: 1. изомерия строения-изомеры строения принадлежат к разным классам органич. соед., например этиловый спирт и диметиловый эфир. 2. структурная изомерия (изомерия углеродного скелета, положения кратных связей) 3. пространственная изомерия. вкл. в себя а) поворотную б) геомерическая в)

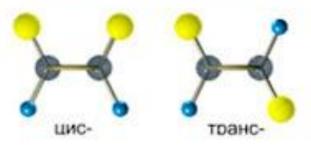
Гибридизаци я Явление изомерии – существование нескольких различных веществ, которым соответствует одна и та же молекулярная Виды изомерии:

- 1.Изомерия строения-изомеры строения принадлежат к разным классам органических соединений, например этиловый спирт и диметиловый эфир.
- 2.Структурная изомерия (изомерия углеродного скелета, положения кратных связей)
- 3. Пространственная изомерия.
- а)поворотная
- б)геометрическая
- в)оптическая
- 4. Изомерия положения заместителей

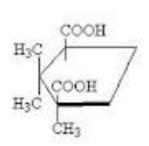
поворотная изомерия

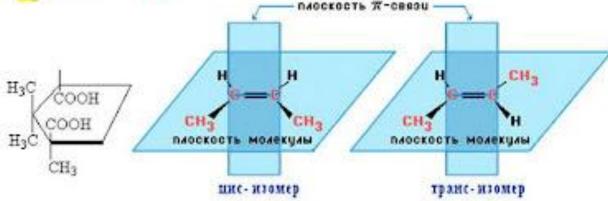
Различные пространственные формы молекулы, переходящие друг в друга путем вращения вокруг σ-связей С-С, называют конформациями или поворотными изомерами (конформерами

$$H$$
 H_3C-C
 C
 C
 C
 C
 H



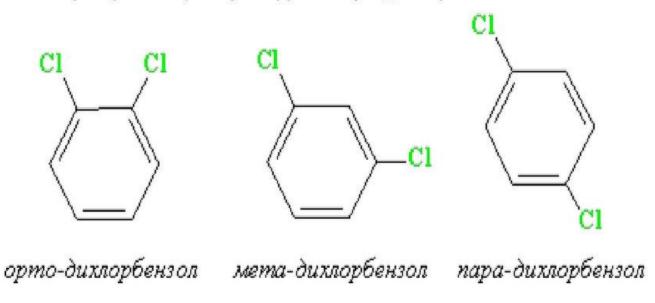

Геометрическая изомерия




У атомов углерода, жестко связанных двойной связью или циклом, должно быть по 2 разных заместителя

www.chemistry.ssu.samara.ru

Оптическая изомерия


Возникает когда хотя бы один атом углерода имеет 4 разных заместителя. Такой атом называется оптическим центром. Молекулы изомеров являются зеркальными отражениями друг друга

Изомерия положения заместителей

 Нередко различия в строении изомеров положения столь очевидны, что не требуется даже мысленно совмещать их в пространстве, например, изомеры дихлорбензола

Алка́ны (также насыщенные углеводороды, парафины, алифатические соединения) — ациклические углеводороды линейного или разветвлённого строения, содержащие только простые связи и образующие гомологический ряд с общей формулой CnH2n+2.

формула	Название	Формула Радикала	Название радикала
CH4	Метан	СН3	Метил
C2H6	Этан	C2H3	Этил
C3H8	Пропан	C3H7	Пропил
C4H10	Бутан	C4H9	Бутил
C5H12	Пентан	C5H11	Пентил
C6H14	Гексан	C6H13	Гексил
C7H16	Гептан	C7H15	Гетил
C8H18	Октан	C8H17	Октил
C9H20	Нонан	C9H19	Нонил
C10H22	Декан	C10H21	Декил

ОСНОВНЫЕ ФУНКЦИОНАЛЬНЫЕ ГРУППЫ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

Функциональная группа		Класс соединений	
Обозначение	Название группы		
—Hal (F, Cl, Br, I)	Галоген	Галогенопроизводные	
-OH	Гидроксильная или гидроксо-	Спирты и фенолы	
- C -	Карбонильная	Альдегиды, кетоны	
-соон	Карбоксильная	Карбоновые кислоты	
-0-	Оксигруппа	Простые эфиры	
-coo-	Сложноэфирная	Сложные эфиры	
-NO ₂	Нитрогруппа	Нитросоединения	
-NH ₂	Аминогруппа	Амины	

Домашнее задание

- В рабочей тетради оформите таблицу: «Основные функциональные группы органических соединений»
- □ Приведите примеры, подтверждающие основные положения теории Бутлерова