# Семинар по физике для 83 и 84 групп

06.04.2020

Ильин А.Б.

## Ядерная физика

1.Вычислите дефект массы, энергию связи и удельную энергию связи ядра алюминия <sup>27</sup> № Масса ядра алюминия m=26,98146 a.e.м.

Решение:



Определяем количество протонов в ядре:

$$M_{\text{M}} = M = 13$$

Определяем количество нейтронов в ядре:

$$M_{M} = M - M = 27 - 13 = 14$$

Рассчитываем общую массу протонов в ядре:

$$MM_{MN} = MMM_{MN} = 13 M1,00728 a. e. m. = 13,09464 a. e. m.$$

Рассчитываем общую массу нейтронов в ядре:

$$MM_{MM} = MMM - MMMMM_{MM} = 14 M1,00867 a.e. m. = 14,12138 a.e. m.$$

Рассчитываем общую массу нуклонов (протонов и нейтронов) в ядре:

Вычитаем из полученного значения массу ядра, и получаем дефект массы этого ядра:

$$\Delta M = M - M_{H} = 27,21602 - 26,98146 = 0,23456$$
a. e. м.

$$\Delta$$
⊠ = 0,23456 a. e. м.⊠1,66 ⊠10<sup>-27</sup>  $\frac{\text{K}\Gamma}{\text{a. e. m.}}$   
= 0,3893696 ⊠10<sup>-27</sup> KΓ

Итак, мы получили значение дефекта масс ядра изотопа алюминия  $^{27}_{13}$ 

$$\Delta$$
MM ≈ 0, 235 a. e. м ≈ 3,89  $M$ 10<sup>-28</sup> кг

Находим энергию связи:

$$M_{CB} = \Delta MMM^2$$

Переведём полученное значение энергии связи из единиц СИ в более удобные – мегаэлектронвольты, сокращённо – МэВ.

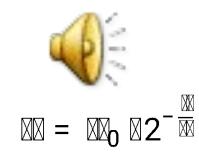
Если 1 эВ = 1,6 
$$\mathbb{I}$$
10<sup>-19</sup> Дж,  
то 1 МэВ = 10<sup>6</sup>  $\mathbb{I}$ 1,6  $\mathbb{I}$ 10<sup>-19</sup> Дж = 1,6  $\mathbb{I}$ 10<sup>-13</sup> Дж,

Итак, действуем: переводим из джоулей в электронвольты:

Итак, энергия связи этого ядра № 219 МэВ

Дело осталось за малым: найти удельную энергию связи:

$$\mathbb{X}_{y,A} = \frac{\mathbb{X}_{CB}}{\mathbb{X}} = \frac{219 \text{ M} \ni B}{27} \approx 8,11 \text{ M} \ni B$$


Ответ:  $\Delta M \approx 0$ , 235 а. е. м  $\approx 3,89 \, M 10^{-28} \, Kr; M_{cB} \approx 219 \, MэB; M_{y,q} \approx 8,11 \, MэB$ 

Задачи такого типа совершенно неинтересны, переполнены рутинными вычислениями, но необходимо заставить себя действовать аккуратно и точно, получая верный ответ.

Масса протона и масса нейтрона не были заданы в условии задачи, но это известные величины, и они даются в справочных таблицах. В семинаре, я вынес эти данные на поля задания.

2. Образец радиоактивного радона  $^{222}_{86}$  содержит  $\mathbb{Z}_0 = 10^{10}$  радиоактивных атомов с периодом полураспада  $\mathbb{Z} = 3,825$  суток. Какое число атомов радона останется через сутки? А какое число атомов распадётся за это время?

#### Решение:



Подставим численные данные и произведём расчёты

3. За какое время  $\mathbb{M}$  произойдет распад изотопа полония массы  $\mathbb{M}$ , если в начальный момент его масса равна  $\mathbb{M}_0$ ? Период полураспада этого изотопа равен  $\mathbb{M}$ .

#### Решение:

Пусть 🕅 - масса одного ядра

Тогда 
$$M_0 = \frac{M_0}{M_1}$$
, а  $M = \frac{M_0 - \Delta M}{M_1}$ ,

Подставим полученные выраженияв закон радиоактивного распада и сократим на массу одного ядра. Получим:

$$\mathbb{M}_0 - \Delta \mathbb{M} = \mathbb{M}_0 \mathbb{M}^{-\frac{\Delta \mathbb{M}}{\mathbb{M}}}$$

После некоторых преобразований получим ответ.

Otbet: 
$$\Delta M = -\frac{M}{MM2} \times M \times 1 - \frac{\Delta M}{M0} \times 1$$

4. Активность радиоактивного элемента уменьшилась в 4 раза за 8 суток. Определите период полураспада этого элемента.

#### Решение:



$$\alpha = \mathbb{Z}_0 \mathbb{Z}^{-\frac{\mathbb{Z}}{\mathbb{Z}}}$$

$$\alpha = \mathbb{Z}_0 \mathbb{Z}^{\frac{\mathbb{Z}}{\mathbb{Z}}} = \mathbb{Z}_0 \mathbb{Z}^{\frac{\mathbb{Z}}{\mathbb{Z}}}$$

Отсюда

$$\frac{\mathbb{M}}{\mathbb{M}_0} = \frac{1}{2^{\frac{\mathbb{M}}{\mathbb{M}}}}$$

По условию  $\frac{\mathbb{M}}{\mathbb{M}_0} = \frac{1}{4} = \frac{1}{2^2}$ , следовательно  $\frac{\mathbb{M}}{\mathbb{M}} = 2$ , отсюда  $\mathbb{M} = \frac{\mathbb{M}}{2} = 4$  суток.

А теперь решите задачу из ЕГЭ прошлых лет.

5. Радиоактивный препарат, имеющий активность  $\alpha=3,7\cdot10^9$  с<sup>-1</sup>, помещен в калориметр теплоемкостью C=4,19 Дж/К. Определите повышение температуры  $\Delta T$  в калориметре за  $\Delta t=1$  час, если известно, что данное радиоактивное вещество испускает  $\alpha$ -частицы с энергией  $W_{\alpha}=5,3$  МэВ.

Замечание: нам не сказали, в какой момент активность препарата имеет такое значение. Это означает, что препарат распадается очень медленно, и за время эксперимента невозможно заметить изменение его активности, то есть период полураспада значительно больше времени наблюдения.

Для возможности свериться приведу ответ к этой задаче.

Otbet:  $\Delta M = 2,7 \text{ K}$ 

В следующей задаче надо знать, что такое альфа-распад, и что такое бэта-распад, уметь записывать соответствующие ядерные реакции.

При альфа-распаде из ядра вылетает альфа-частица. Уравнение реакции выглядит вот так:

$$\mathbb{Z} \times \mathbb{Z} \times$$

Сумма нижних индексов в ядерной реакции всегда сохраняется (это просто форма записи закона сохранения электрического заряда)

Сумма верхних индексов в ядерной реакции всегда сохраняется (это просто свидетельство того, что в результате ядерной реакции малая доля энергии покоя превращается в другие виды энергии, то есть энергия системы почти не изменяется))

Для бэта-распада (вылетает электрон – отрицательно заряженная частица)

$$\mathbb{Z} + \mathbb{Z}$$

Масса электрона почти в 2000 раз меньше массы нуклона, поэтому при округлении до целых (в а.е.м) массовое число получается равным нулю.

#### Решение:

Для массовых чисел:

Отсюда

Для зарядовых чисел:

$$92 = \mathbb{M} + 3 \mathbb{M} + 2 \mathbb{M} - 1 \mathbb{M}$$

Отсюда

$$M = 92 - 3 M2 - 2 M - 1 M = 92 - 6 + 2 = 88$$

По таблице Менделеева определяем название элемента. Оно определяется зарядовым числом — 88.

Ответ: <sup>226</sup><sub>88</sub>

7. Радон  $^{222}_{88}$  — это α-радиоактивный газ. Какую долю полной энергии, освобождаемой при распаде радона, уносит α-частица ( $^{4}_{2}$  ДДДД)? Считайте, что до распада ядро радона покоилось.

#### Решение:



Ответ: альфа частица уносит 98% выделившейся энергии при альфа-распаде ядра радона

8. При бомбардировке нейтронами ядер азота <sup>4</sup>N испускается протон. В ядро какого элемента превращается ядро азота? Запишите уравнение реакции.

#### Решение:

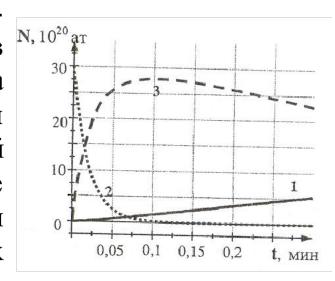
Запишем уравнение, соответствующее описанной ядерной реакции.

Проговорим, что происходит.

В ядро азота попадает один нейтрон (ядро очень мало, вероятность попадания одного нейтрона в него крайне мала, а уж двух нейтронов – пренебрежимо мала!), получившееся ядро распадается на ядро и протон.

Находим массовое и зарядовое число:

$$14 + 1 = M + 1$$
 $M = 14$ 
 $7 + 0 = M + 1$ 
 $M = 6$ 


Это изотоп углерода <sup>14</sup><sub>6</sub>С

Otbet:  ${}^{14}_{7}$ M +  ${}^{1}_{0}$ M M  ${}^{14}_{6}$ M +  ${}^{1}_{1}$ M

Последняя задача также из ЕГЭ, практически на логику и сообразительность. Никаких формул писать не надо, но обосновать свой ответ парой рассуждений необходимо.

Ответ пока не привожу

9. Полоний <sup>213</sup><sub>84</sub> P<sub>0</sub> в результате αпереходит распада В радиоактивный изотоп свинца который <sup>209</sup><sub>82</sub>Pb затем превращается в стабильный изотоп висмута 200 ві. На рисунке приведены графики изменения атомов трех числа всех изотопов с течением времени.



Найдите, какой график соответствует каждому изотопу. Ответ обосновать.

### Домашнее задание:

- 1.Вычислите дефект массы, энергию связи и удельную энергию связи ядра кислорода  $^{17}_{8}$ О. Масса ядра кислорода m=16,99913 а.е.м.
- 2.В микрокалориметре теплоемкостью C=100 Дж/K помещен образец изотопа кремния массы  $m_0=1 \text{ мг}$  (молярная масса  $\mu=31 \text{ г/моль}$ ). При распаде одного ядра выделяется энергия  $W=4,4\cdot10^{-19} \text{ Дж}$ . Период полураспада кремния T=2 ч 36 мин. Определите повышение температуры калориметра  $\Delta t$  спустя  $\tau=52$  мин после начала опыта.
- 3.Изотоп тория  $^{232}_{90}$ Ш в результате серии радиоактивных распадов превращается в стабильный изотоп свинца  $^{208}_{82}$ Ш Сколько  $\alpha$  и  $\beta$  распадов при этом происходит?
- 4.При бомбардировке альфа-частицами ядер азота  $^{14}$ М испускается протон. В ядро какого элемента превращается ядро азота? Запишите уравнение реакции