I закон термодинамики

Закон сохранения энергии

Энергия в природе не возникает из ничего и не исчезает: количество энергии неизменно, она только переходит из одной формы в другую.

Способы изменения внутренней энергии

I закон термодинамики

внутренняя энергия определяется только состоянием системы, причем изменение внутренней энергии системы при переходе ее из одного состояния в другое равно сумме работы внешних сил и количества теплоты, переданного системе:

F $A_{\text{BHeIIIH}} = F \Delta x$

 $\Delta U = A$ внешн + Q

Если при нагревании газ расширяется и при этом совершает работу *A*, то первый закон термодинамики можно сформулировать по-другому:

$$Q = \Delta U + A'$$

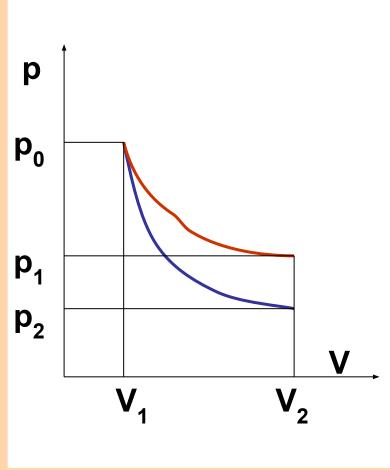
Количество теплоты, переданное газу, равно сумме изменения его внутренней энергии и работы, совершенной газом.

Так как работа газа и работа внешних сил вследствие 3-го закона Ньютона равны по модулю и имеют противоположный знак:

$$A$$
внешн = $-A^{\prime}$

I закон термодинамики и изопроцессы

НАЗВАНИЕ ПРОЦЕССА	ГРАФИК	ΔU	A ^I	Q	УРАВНЕНИЕ І ЗАКОНА ТД
ИЗОТЕРМ. РАСШИРЕНИЕ	p 1 2 V	0	A ^l >0	Q>0	$Q = A^I$
ИЗОБАРИЧ. РАСШИРЕНИЕ	p 1 2	ΔU>0	A ^I >0	Q>0	$Q = A^I + \Delta U$
ИЗОХОРНОЕ НАГРЕВАНИЕ	p 1 2 V	ΔU>0	A ^I =0	Q>0	Q = ΔU


I закон термодинамики и изопроцессы

НАЗВАНИЕ ПРОЦЕССА	ГРАФИК	ΔU	A ^I	Q	УРАВНЕНИЕ І ЗАКОНА ТД
ИЗОТЕРМ. СЖАТИЕ	p 2 1 V	0	AI<0	Q<0	$Q = A^I$
ИЗОБАРИЧ. СЖАТИЕ	p 2 1	ΔU<0	A ^I <0	Q<0	$Q = A^I + \Delta U$
ИЗОХОРНОЕ ОХЛАЖДЕНИЕ	p 1 1 V	ΔU<0	A ^I =0	Q<0	Q = ΔU

Адиабатный процесс

- это модель термодинамического процесса, происходящего в системе без теплообмена с окружающей средой.

Линия на термодинамической диаграмме состояний системы, изображающая равновесный (обратимый) адиабатический процесс, называется адиабатой.

I закон термодинамики и изопроцессы

НАЗВАНИЕ ПРОЦЕССА	ГРАФИК	ΔU	A ^I	Q	УРАВНЕНИЕ І ЗАКОНА ТД
АДИАБАТНОЕ РАСШИРЕНИЕ	p _↑ 1	ΔU<0	A ^I >0	Q=0	$\Delta U = -A^{I}$
	2 V				ΔU = A
АДИАБАТНОЕ СЖАТИЕ	p 2	ΔU>0	AI<0	Q=0	$\Delta U = -A^{I}$
	1 V				ΔU = A

_____ ИЗОТЕРМА

_____ АДИАБАТА

Второй закон термодинамики

Процессы

Обратимые

Необратимые

Обратимый процесс

- Это процесс, который может происходить как в прямом, так и в обратном направлении
- Обратимый процесс это идеализация реального процесса.
- Все макроскопические процессы проходят в определенном направлении

Необратимый процесс

- Процесс, обратный которому самопроизвольно не происходит
- Все макроскопические процессы являются необратимыми

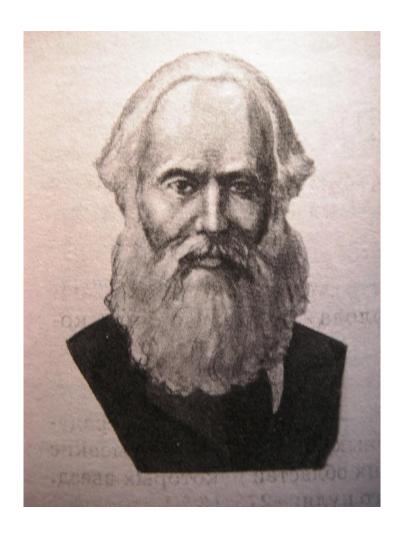
Примеры

- Кусок льда, внесенный в комнату, не отдает энергию окружающей среде и не охлаждается
- Маятник самостоятельно не наращивает амплитуду колебаний

Ни охлаждение льда в первом случае, ни увеличение амплитуды во втором не противоречит ни закону сохранения энергии, ни законам механики. Оно противоречит лишь второму закону термодинамики

Второй закон термодинамики

В циклически действующем тепловом двигателе невозможно преобразовать все количество теплоты, полученное от нагревателя, в механическую работу


Формулировка Р. Клаузиуса

• Невозможно перевести тепло от более холодной системы к более горячей при отсутствии одновременных изменений в обоих системах или окружающих **Te**A**a**X

Формулировка У. Кельвина

Невозможно осуществить такой периодический процесс, единственным результатом которого было бы совершение работы за счет теплоты взятой от одного источника

Статистическое истолкование второго закона термодинамики

- Изолированная система самопроизвольно переходит из менее вероятного состояния в более вероятное, или
- Замкнутая система многих частиц самопроизвольно переходит из более упорядоченного состояния в менее упорядоченное

Самостоятельная работа

- 1. На сколько изменилась внутренняя энергия газа, если ему сообщили количество теплоты 20 кДж и совершили над ним работу 30 кДж?
- 2. При изобарном расширении 80 г кислорода с температурой 300 К его объем увеличился в 1,5 раза. Определите количество теплоты, израсходованной на нагревание кислорода, работу, совершенную при его расширении, и изменение внутренней энергии газа.