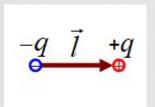
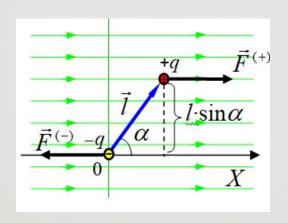
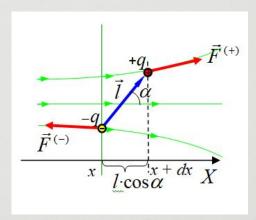
Лекция 14. **Элементы теории электромагнетизма Максвелла**




**) § 11. Электрическое поле в веществе Уже было:

11.1. Электрический

диполь


(<u>Опр.</u>) Электрическим диполем называется система, состоящая из двух одинаковых по модулю и противоположных по знаку точечных зарядов q, находящихся на расстоянии 1 друг от друга

$$N = [p, E]$$

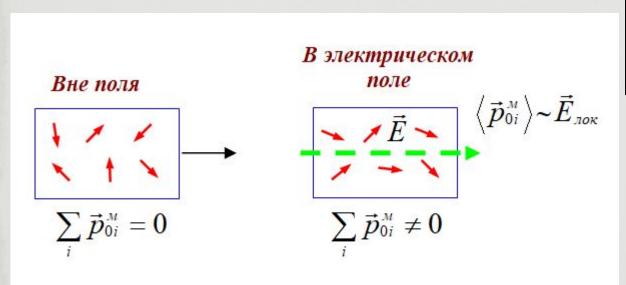
Ориентируется по полю и втягивается в него

11.2. Понятие о механизмах поляризации

диэлектриков

Без поля:
$$\sum_{i} p_{i}^{\mathbb{M}} = 0$$

$$m{B}$$
 поле $E: \sum_i p_i^{\mathbb{M}_M}
eq 0$ "Поляризация среды"



Собственное поле диполей:

11.2.1. Полярные – ориентационный (дипольный) механизм $(H_{2}O, HCl, NH_{3}, ...)$

Таблица

Дипольные моменты молекул в Дебаях, (\mathcal{J})

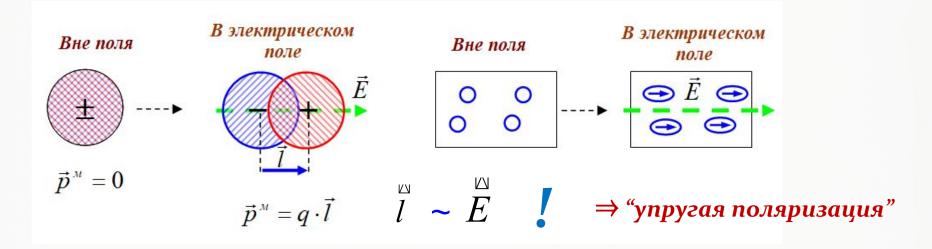
Молекула	р, Д	Молекула	р, Д
CO	0,11	NH ₃	1,46
NO ₂	0,32	H ₂ O	1,86
O ₃	0,53	H ₂ O ₂	2,26

1 Дебай ≈ 3,3·10⁻³⁰ Кл·м

$$\left\langle \stackrel{\boxtimes}{p} \right\rangle = \frac{p_0^2}{3kT} \cdot \stackrel{\boxtimes}{E}^{\scriptscriptstyle DOK}$$

"Аналог" закона Кюри для парамагнетиков

11.2.2. Неполярные – электронная поляризация

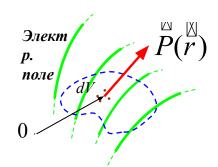

(поляризация смещения) (Ar, H_2 , N_2 , O_2 , CO_2 , CCl_4 , ...)

Без поля:
$$\stackrel{\mathbb{M}}{p_i}^{\scriptscriptstyle{\mathcal{M}}}=0$$

$$p_i^{\scriptscriptstyle{M}} = \alpha \; arepsilon_0 \cdot E$$

$$_{oldsymbol{B}}$$
 поле $\overset{oldsymbol{oldsymbol{eta}}}{p_i^{\scriptscriptstyle M}}=q \overset{oldsymbol{oldsymbol{eta}}}{p_i^{\scriptscriptstyle M}}=q \overset{oldsymbol{oldsymbol{eta}}}{p_i^{\scriptscriptstyle M}}$

α – "поляризуемость молекул"


Собственное поле диполей:

$$E = E_0 + E'$$

(Опр.) Состояние поляризации среды характеризует

вектор поляризации

Локальная характеристика

$$P(r) = \frac{\sum_{i} p_{i}^{M}}{\Delta V}$$

именно
$$\stackrel{\bowtie}{P}$$
 определяет $\stackrel{\bowtie}{E'}$: $\stackrel{\boxtimes}{E'} = \frac{1}{\varepsilon_0} \stackrel{\boxtimes}{P}$

$$E'$$
: $E' = \frac{1}{\varepsilon_0} P$

Эксперимент:
$$\vec{P} = \varkappa \cdot \varepsilon_0 \vec{E}$$

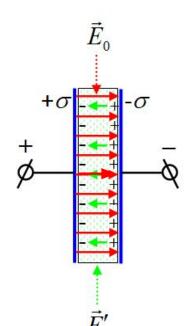
$$P = \varkappa \cdot \varepsilon_0 E$$

$$E' = \varkappa \cdot E$$

ж — диэлектрическая восприимчивость среды

**) Совсем необязательная "формула":
$$\varkappa = \frac{1}{\varepsilon_0} \left(\frac{p_0^2}{3kT} \cdot n_{non} + \alpha \varepsilon_0 \cdot n_{{\scriptscriptstyle H.n.}} \right)$$

$$E = E_0 + E'$$


и при этом:
$$\stackrel{\bowtie}{E'}\downarrow\uparrow\stackrel{\bowtie}{E_0}$$
 !

$$\stackrel{\bowtie}{E'}\downarrow\uparrow\stackrel{\bowtie}{E}_0$$

Поэтому:
$$E = E_0 - E'$$

$$E = E_0 - \varkappa \cdot E \implies E + \varkappa \cdot E = E_0 \implies E = \frac{E_0}{1 + \varkappa} = \frac{E_0}{\varepsilon}$$

... и окончательно:

(<u>Опр</u>.) диэлектрическая проницаемость среды: $\mathcal{E} = \frac{E_0}{E}$

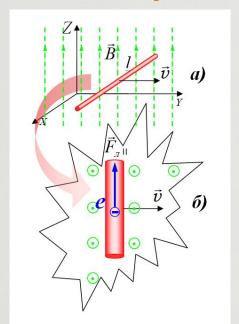
$$\varepsilon = \frac{E_0}{E}$$

*) Общий вывод:

В тех случаях, когда однородный изотропный диэлектрик занимает всю область пространства, где есть электрическое поле, присутствие диэлектрика сводится к уменьшению поля $(m.e. E \ u \ \phi)$ в ε раз. Соответственно уменьшаются и силы взаимодействия заряженных тел

*) Таблица. Диэлектрическая проницаемость веществ

Твёрдые тела	&	Жидкости / Газы (атм. давл.)	&
Бумага сухая / Каучук	2–2,5	Бензин / Масло	2–4,8
Эбонит / Янтарь	2,5–3	Вода дист.	81
Кварц	3,5–4,5	Спирт этил.	27
Плексиглас (оргстекло)	3,5	Азот	1,00054
Полистирол/Полиэтилен	2,3–2,6	Кислород	1,00055
Слюда	5,7–7	Углекислый газ	1,0009
Фарфор / Стекло	4–16	Воздух сухой	1,00025


§ 18. Элементы теории электромагнетизма Максвелла

"В науке необходимо воображение. Она не исчерпывается целиком ни математикой, ни логикой, в ней есть что-то от красоты и поэзии"

М. Митчелл (американский астроном)

19.1. Трактовка Максвелла явления электромагнитной индукции

Недавно обсуждали:

Но какие «сторонние силы» совершают работу ??

Работа электростатического поля по замкнутому контуру равна нулю: A_{\bigcirc} , а ВИХРЕВОГО нет

$$\oint_C (E^*, dl^*) \equiv \mathcal{E}_i$$

Если вспомним определение потока: $\Phi = \int (\vec{B}, d\vec{S})$

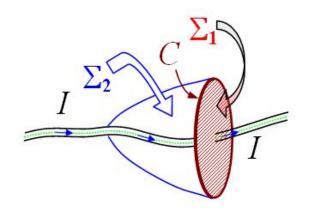
$$\Phi = \int_{\Sigma} (B, dS)$$

И подставим в закон ЭМИ:

$$\mathcal{E}_{\mathrm{s}i} = -\frac{d\Phi_{\mathrm{s}}}{dt}$$

Получим:

$$\oint_C E_l dl = -\frac{d}{dt} \int_{\Sigma} B_n dS$$
 (вслед за Максвеллом ©)


Уравнение Максвелла:
$$\oint_C E_l dl = -\int_{\Sigma} \frac{\partial B_n}{\partial t} dS$$

19.2. "Ток

смещения"

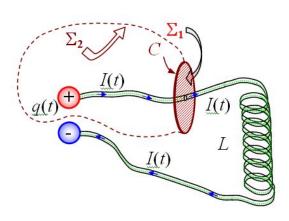
"Магнитостатика" – ток постоянный:

И поле тоже!

Один контур, две поверхности:

$$\oint_C B_l dl = \mu_0 \cdot \int_{\Sigma} j_n dS$$

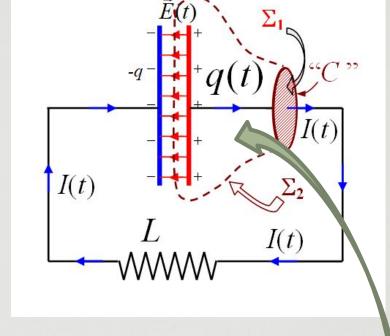
или


$$\oint_C B_l dl = \mu_0 \cdot \sum_i I_i$$

С теоремой о циркуляции всё в порядке – результат один

А если "Магнитодинамика" – ток переменный:

Например, "колебательный контур


... две поверхности, и результат РАЗНЫЙ:

Для
$$\Sigma_1$$
: $\mu_0 \cdot \int_{\Sigma_1} j_n dS = \mu_0 \cdot I \neq 0$

, а вот для
$$\Sigma_2$$
: $\mu_0 \cdot \int_{\Sigma_2} j_n dS = 0$

→ Надо подправлять теорему!

Что-нибудь придумать для Σ_2 «вместо» $\mu_0 \cdot I$

Что же ?? Мы знаем:
$$I = \frac{aa}{dt}$$

Это заряд обкладки, и он внутри " $\Sigma_1 + \Sigma_2$ "

$$\oint_{\Sigma} E_n dS = \frac{1}{\varepsilon_0} q \quad \Rightarrow \quad q = \varepsilon_0 \oint_{\Sigma} E_n dS \qquad \Rightarrow \quad I = \varepsilon_0 \frac{d}{dt} \left(\oint_{\Sigma} E_n dS \right)$$

$$I = \varepsilon_0 \frac{d}{dt} \left(\oint_{\Sigma} E_n dS \right)$$

или

 $I^{\scriptscriptstyle CM.} = arepsilon arepsilon_0 iggl(\oint_{\Sigma} rac{\partial E_n}{\partial t} dS iggr)$

"Ток смещения"

Дж. К. Максвелл

"О физических силовых линиях", «Phylosophical Magazine», 1862 г.

Замыкают токи проводимости в «разорванных» цепях переменного тока (там где нет переноса заряда)

!!

"Симметрия" восстановлена:

ЭМИ и "ток смещения"

$$\frac{\partial B}{\partial t} \Rightarrow E$$

$$\frac{\partial E}{\partial t} \Rightarrow B$$

19.3. Уравнения Максвелла (в интегральной форме)

"Самое главное в теории электромагнетизма Максвелла – это уравнения Максвелла"

Генрих Герц

(I)
$$\oint_{\Sigma} E_n dS = \frac{1}{\varepsilon \varepsilon_0} q$$
; (теорема Гаусса – закон Кулона + принцип суперпозиции);

(II)
$$\oint_{\Sigma} B_n dS = 0$$
; (теорема Гаусса для магнитного поля – магнитных зарядов в природе нет!);

(III)
$$\oint_C E_l dl = -\int_{\Sigma} \frac{\partial B_n}{\partial t} dS$$
; (Закон электромагнитной индукции в трактовке Максвелла);

$$(\mathrm{IV})\oint\limits_C B_l dl = \mu \mu_0 \cdot \left(\int\limits_{\Sigma} j_n dS + arepsilon arepsilon_0 \int\limits_{\Sigma} rac{\partial E_n}{\partial t} dS
ight)$$
. (Теорема о циркуляции «подправленная» Максвеллом)

Ymo ewë
$$Arr F=qE+q[V,B]$$

Вот и вся "классическая электродинамика" 😉 ...

Конец XIX века – "Природа познана. Ура!!" 😊 ...

"… кажется вероятным, что большинство основных принципов уже твёрдо установлено и что будущее продвижение вперёд следует искать в основном в строгом применении этих принципов ко всем явлениям, которые обращают на себя наше внимание. …

... Будущие истины физики видны в шестом знаке после запятой"

Альберт Майкельсон (Нобелевская премия 1907 г.)

Новые открытия, сделанные в физике за последние несколько лет, ..., оказали на учёных влияние, подобное воздействию Ренессанса на литературу ...

На пути вздымаются ещё более высокие вершины, и они покорятся каждому, кто поднимается на них пока ещё широкими дорогами...

Дж.Дж. Томсон

лауреат Нобелевской премии, открывший электрон