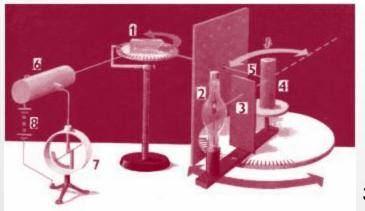

Единая физическая картина мира


« С давних времён, с тех пор, как существует изучение природы, оно имело перед собой в качестве идеала конечную, высшую задачу: объединить пёстрое многообразие физических явлений в единую систему, а если возможно, то в одну-единственную формулу».

Макс Планк

Физическая картина мира – это обобщенная модель природы, включающая в себя представления физической науки о материи, движении, взаимодействии, пространстве и времени, причинности и закономерности.

Связь физики и философии

«Многое, о чём думает физика, предвидела философия. Мы, физики, благодарны ей за это, ибо то, к чему мы стремимся, - это картина мира, которая не только соответствует опыту, но и удовлетворяет требованиям философской картины».

М.Борн

Принципы познания

Название принципа	Содержание
Принцип причинности	Упорядоченность явлений накладывает ограничения на всё, что происходит в мире
Принцип наблюдаемости	В науку должны вводиться не умозрительные, а наблюдаемые (измеряемые) величины
Принцип соответствия	Каждая физическая теория – относительная истина, содержащая элемент абсолютной истины
Принцип симметрии	Симметрия выражает сохранение чего-то при каких-то изменениях
Принципы (правила) отбора	Ограничивают наше вмешательство в процесс преобразования природы
Принцип детерминизма	Учение о взаимосвязи и взаимной определённости всех явлений и процессов, доктрина о всеобщей причинности.

Физическая картина мира

Вспомним:

- Что такое физика?
- Что такое материя?
- Что такое вещество? поле?
- <u>Что является формой существования</u>
 <u>материи?</u>
- Что такое физический закон?
- Что такое физическая теория?
- <u>Что такое принципы физической картины</u>
 <u>мира?</u>

Движение существо

Материя

рорма рии

Вещество ; – любое и Поле риального

Одна из форм материи, то, из чего состоит физическое тело Особая форма материи, посредством которой осуществляются взаимодействия в природе

TALLADELA

Обнаруживается органами чувств человека

XIAMIAUECKIAE

Недоступно органам чувств человека (кроме света)

МЕХАНИЧЕСКАЯ КАРТИНА МИРА

формируется на основе:

механики Леонардо да Винчи (1452 - 1519), гелиоцентрической системы Н. Коперника (1473 - 1543), экспериментального естествознания Г. Галилея (1564 - 1642), законов небесной механики И.Кеплера (1571 - 1630), механики И.Ньютона (1643 - 1727)

ЭЛЕКТРОМАГНИТНАЯ КАРТИНА МИРА

формируется на основе:

начал электромагнетизма М. Фарадея (1791 – 1867), теории электромагнитного поля Д Максвелла (1831 – 1879), электронной теории Г. Лоренца (1853 – 1928), постулатов теории относительности А. Эйнштейна (1879 – 1955)

КВАНТОВО – СТАТИСТИЧЕСКАЯ КАРТИНА МИРА

формируется на основе:

квантовой гипотезы М.Планка (1858 - 1947), волновой механики Э. Шрёдингера (1887 - 1961), квантовой механики В.Гейзенберга (1901 - 1976), квантовой теории атома Н.Бора (1885 - 1962)

Обзор картин мира

Физическая картина мира (ФКМ)	Примерное время существования	Ученые, внесшие наибольший вклад в развитие ФКМ	Основные законы, теории, принципы
Механическая	XVI - XVIII вв.	Кеплер, Галилей, Декарт, Ньютон	Принцип относительности; законы динамики; закон всемирного тяготения; законы сохранения
Электродинами ческая	XIX – начало XX в.	Фарадей, Максвелл, Лоренц, Эйнштейн	Закон Кулона; закон электромагнитной индукции; уравнения Максвелла; специальная теория относительности
Квантово-полевая	Начало XX – середина XX в.	Планк, Эйнштейн, Бор, Резерфорд, де Бройль, Гейзенберг, Шредингер	Гипотеза Планка; идеи Эйнштейна; постулаты Бора; корпускулярно-волновой дуализм

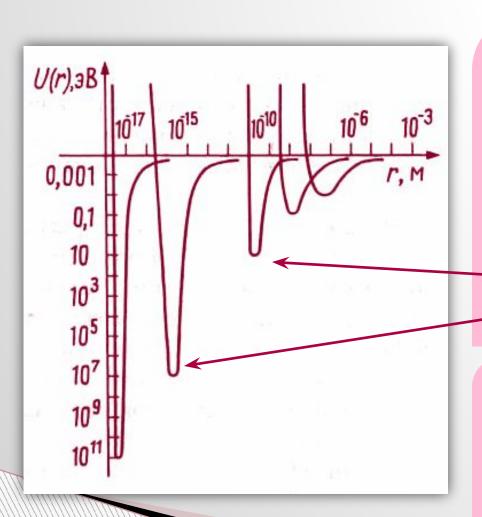
Физическая картина мира	Исходные философские идеи	Основные понятия	Основные принципы
Механичес кая картина мира	Материя – вещественная субстанция Движение – простое механическое перемещение Пространство и время – абсолютны Взаимодействие передаётся мгновенно в любую точку пространства	Материя состоит из неделимых, весомых атомов. Масса – мера инерции. Под действием силы движение не является равномерным и прямолинейным. Универсальным является взаимодействие тел силами тяготения.	относительности, дальнодействия, детерминизма
Электромаг нитная картина мира	Материя - непрерывное поле Движение - распространение колебаний в поле Пространство и время - относительны Взаимодействие передаётся с конечной скоростью	Мир -электродинамическая система, состоящая из электрически заряженных частиц, взаимодействующих при помощи электромагнитного поля.	близкодействия соответствия
Квантово- полевая картина мира	Материя существует в двух формах: вещество и поле Движение — частный случай физического взаимодействия Пространство-время и причинность относительны и зависимы Взаимодействие передаётся с конечной скоростью, не превосходящей скорости света	Каждый элемент материи обладает свойствами волны и частицы. Условия наблюдения (метод познания) влияют на определённость характеристик исследуемого объекта	неопределённости, дополнительности 11

Структура мира

мегамир

- Галактики
- Звёзды
- Гравитационное и электромагнитное поля

макромир


- Планеты
- Окружающие нас на Земле тела
- Гравитационное и электромагнитное поля

микромир

- Молекулы, атомы, ядра атомов
- Элементарные частицы
- Слабое и сильное поля
- Гравитационное и электромагнитное поля

Структурные уровни организации материи

Каждый уровень природной организации материи (от микрообъектов до Вселенной в целом), характеризуется своей энергией связи между элементами в составе физической системы этого уровня:


- ◆Энергия связи атома 10 эВ
- ◆Энергия связи ядра 10 МэВ

Превышение энергии внешнего воздействия над энергией связи данного уровня приводит к «вскрытию» более глубокого уровня по шкале энергий

Фундаментальные взаимодействия

Вид взаимодействия	Переносчик взаимодейств ия	Участники взаимодейс твия	Относит ельная интенси вность	Роль взаимодействия
Гравитационно е	Гравитон (G)	Все частицы	1	Существование мегамира
Электромагнитное	Фото н (ү)	Все заряженные частицы	10^{36}	Существование макромира
Слабо е	Векторные бозоны $\left(W^{+},W^{-},Z^{0}\right)$	Все частицы, кроме фотона	10^{32}	β-распад ядер, превращения элементарных частиц
Сильное	Глюон	Нуклоны	10^{38}	Существовани е ядер 15

Законы сохранения и картина мира

Симметрия в природе и законы сохранения

Вид симметрии	Инварианты	Закон сохранения
Однородность пространства	Импульс замкнутой системы тел	Закон сохранения импульса $m_1 \overset{\bowtie}{\mathcal{O}}_1 + m_2 \overset{\bowtie}{\mathcal{O}}_2 + \cdots + m_n \overset{\bowtie}{\mathcal{O}}_n = const$
Однородность времени	Полная энергия замкнутой системы тел	Закон сохранения энергии $E_1 + E_2 + \dots + E_n = const$
Изотропность пространства	Момент импульса замкнутой системы тел	Закон сохранения момента импульса $\sum m \overset{\text{M}}{\upsilon} \cdot \overset{\text{M}}{r} = const$

СОВРЕМЕННАЯ КАРТИНА МИРА

Мир основан на 48 фундаментальных частицах:

- •12 лептонов (электрон, мюон, таон, электронное нейтрино, мюонное нейтрино и их античастицы);
- •36 кварков (верхний, нижний, странный, очарованный, красивый, истинный кварки, причём каждый из них в трёх разновидностях (красный, синий, зелёный) и их античастицы).

Многообразие и единство мира основывается на взаимодействии и взаимопревращении фундаментальных частиц.

Движение есть проявление фундаментальных взаимодействий (гравитационного, электромагнитного, сильного и слабого), переносчиками которых являются фотоны, глюоны, промежуточные бозоны и гравитоны.

Представления об устройстве мироздания складываются на основе разработки единой теории поля, объединяющей все фундаментальные взаимодействия (теория Великого объединения, теория суперсимметрии).

Природа рассматривается в движении и развитии. В физике рассматривается диалектический метод (вещество и поле, частица и волна, масса и энергия рассматриваются в диалектическом единстве).

Современные представления о мире характеризуют:

системность; глобальный эволюционизм; самоорганизация; историчность.

Современные представления характеризуются как научнометодологические: объективная картина объекта опосредуется (измерением) методом познания субъекта.

Великое объединение (идеи объединения фундаментальных взаимодействий)

Одна из главных задач физики описать разнообразие природы единым способом.

большие научные достижения Самые прошлого были шагами к этой цели:

- > объединение земной и небесной механики Исааком Ньютоном в XVII столетии;
- оптики с теорией электричества магнетизма Дж. Максвеллом в XIX столетии;
- геометрии пространства—времени гравитации Альбертом Эйнштейном с 1905-16г
- химии и атомной физики в квантовой *механике* в 20-ых годах. 19

Последняя в их ряду — Стандартная модель взаимодействия элементарных частиц (СМ), включающая в себя модель электрослабого взаимодействия Глэшоу-Вайнберга-Салама и Квантовую хромодинамику (КХД).

Можно сказать, что на сегодняшний день именно СМ является реальным итогом многолетней работы сотен тысяч людей от теоретиков до простых инженеров и лаборантов.

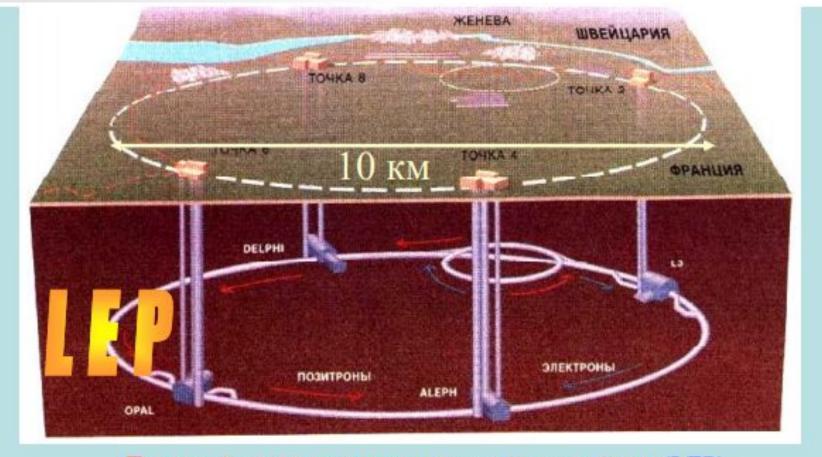
Стандартная Модель — квантовополевая теория. Основные объекты такой теории — поля, включая электромагнитное поле.

Колебания таких полей переносят энергию и импульс. Эти волны собираются в пакеты, или кванты, которые наблюдаются в лаборатории как элементарные частицы.

В частности, квант электромагнитного поля – частица, известная как фотон.

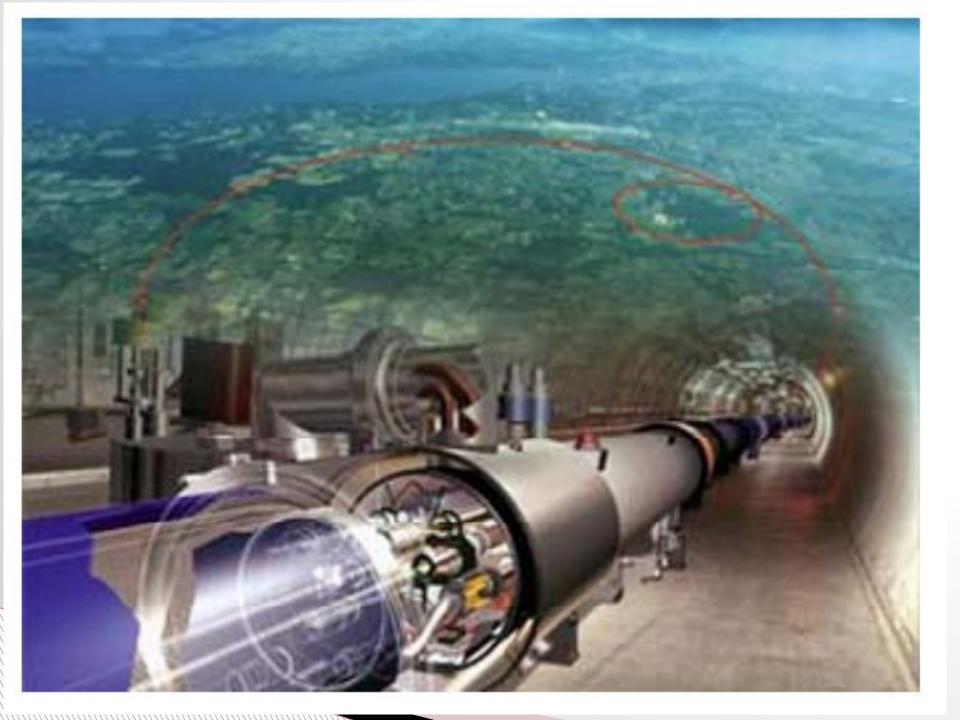
Электри- чество магнетизм свет бета-распад нейтрино	Электромаг- нетизм слабое взаимодейст- вие	электрослабое взаимодейст- вие	Стандартная модель	
протоны нейтроны пионы	сильное взаимодействие			?
земное притяжение небесная механика	универсальная гравитация		Общая теория относительнос ти	
	геометрия пространства- времени		ПИ	

ВСЕОБЩАЯ ТЕОРИЯ


В течение многих лет физики пытались создать единую научную теорию, обосновывающую все виды взаимодействий во Вселенной. Сейчас они разрабатывают "всеобщую теорию", доказать, что все субатомные частицы которая объяснила бы, как

гравитационная и электромагнитная силы, а также сильное ядерное и слабое взаимодействия связаны между собой. Кроме того, эта теория призвана происходят от единой

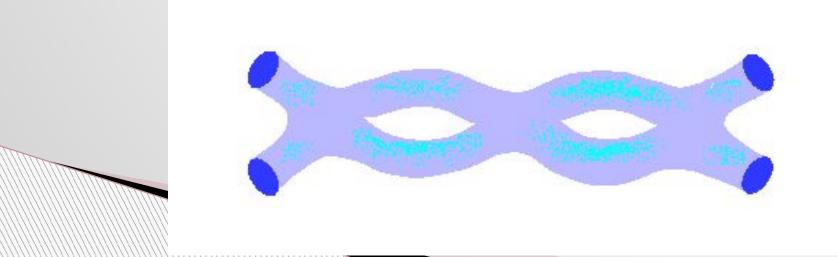
Чтобы завершить Стандартную Модель, необходимо подтвердить существование скалярных полей и выяснять, сколько существует типов полей.


Это — проблема обнаружения новых элементарных частиц, часто называемых частицами Хиггса, которые могут быть зарегистрированы как кванты этих полей.

Большой электрон-позитронный коллайдер (LEP).

Построен в 1988 г. в долине Женевского озера на глубине 100 метров - туннель длиной 27 км

Получены энергии до 210 ГэВ: была учтена зависимость энергии от положения Луны по отношению к Земле, от уровня воды в Женевском озере, от прибытия поездов на железнодорожный вокзал¹² Женевы и т.д. Время эксплуатации — 11 лет.



Теория струн.

создатели - физики М.Грин и Д.Шварц.

<u>Струны</u> представляют собой отрезки со свободными концами или соединенными в виде восьмерки.


Их размеры - примерно 10 -33 см.

Теория струн основана на гипотезе о том, что все элементарные частицы и их фундаментальные взаимодействия возникают в результате колебаний и взаимодействий ультрамикроскопических квантовых струн на масштабах порядка планковской длины 10-35 м

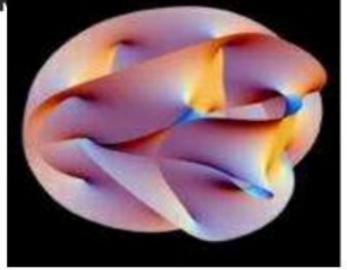
Каждая элементарная частица, согласно теории суперструн, состоит из колеблющегося и тонкого (бесконечно тонкого) волокна, которое физики и

назвали струной.

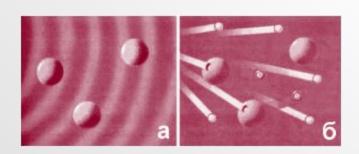
Достижения теории струн:

- она открыла путь к построению теории гравитации;
- она позволила объединение в единой математической структуре всех четырех фундаментальных взаимодействий и показала, что это разные проявления одного и того же физического принципа;
- она дала возможность разрешить большинство парадоксов, возникающих при конструировании квантовых моделей черных дыр;
- она дала новый взгляд на происхождение Вселенной и теорию Большого Взрыва.

Однако, все не так просто. Уравнения теории суперструн дают правильные решения только при одном условии - если наше пространство является 11-мерным!


М-теория — современная физическая теория, созданная с целью объединения фундаментальных

взаимодействий. В качестве базового объекта используется так называемая «брана»


(многомерная мембрана) — протяжённый

двухмерный или с большим числом измерений

(п-брана) объен

Физическая картина мира — это часть нашего мировоззрения, помогающего правильно ориентироваться в мире, целенаправленно в нем действовать, жить и работать.

