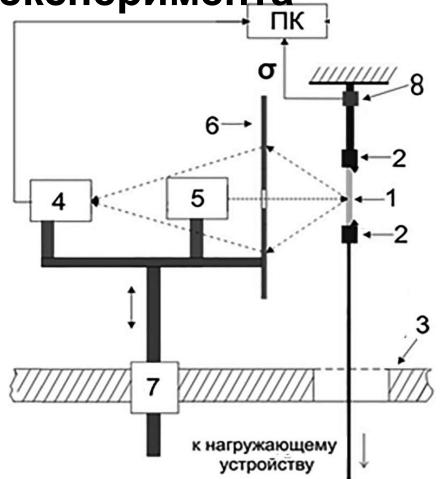
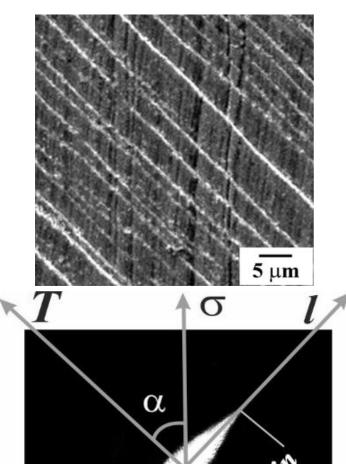
Исследование возникновения и развития скольжения в поликристаллических образцах алюминия с помощью лазерной методики

Подготовила : Дергачёва Анна Научный руководитель : проф. Бадиян Е.Е.


Введен ие

Для исследования закономерностей развития пластической деформации поликристалла с учетом согласования её в соседних зернах и определения возможных механизмов этого согласования, необходимы экспериментальные исследования, позволяющее следить за возникновением и развитием скольжения *in situ* в процессе деформирования образца одновременно во всех его зернах и их частях вплоть до разрушения образца.


Известные многочисленные современные методы, не позволяют решать эту проблему.

Методика

эксперимента

- **Рис. 1.** Схема экспериментальной установки для исследования возникновения и развития сдвиговой моды пластической деформации поликристаллов:
 - 1 исследуемый образец;
 - 2 захваты для крепления образца;
 - 3 опорная плита;
 - 4 веб-камера;
 - 5 Не-Nе лазер;
- 6 прозрачный экран для регистрации дифрагированного пучка лазера;
- 7 устройство для сканирования пучка лазера по поверхности образца;
 - 8 упругий элемент (датчик силы).

20 mm

Возможности

МЕТОДИКИ Рис. 2. Микрофотография квазипериодической структуры деформационного рельефа, возникающего на полированной поверхности одного из зёрен поликристалла алюминия после его деформирования на 7,5%. Получена с помощью с помощью растрового микроскопа JEOL GSM-840

Рис. 3. Дифракционная картина, полученная в результате дифракции лазерного излучения на (He-Ne, λ = 0,63 мкм) на квазипериодической структуре приведенной на рис. 4, где lнаправление дифракции; σ – направление растяжения образца; Т – направление скольжения дислокаций.

Экспериментальные результаты

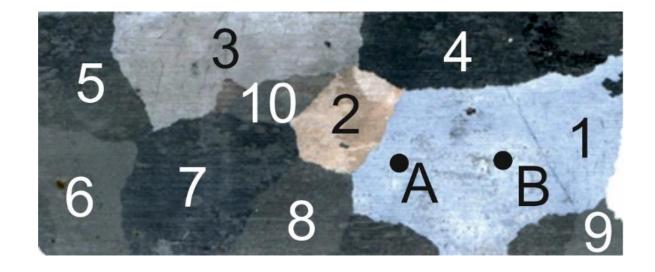
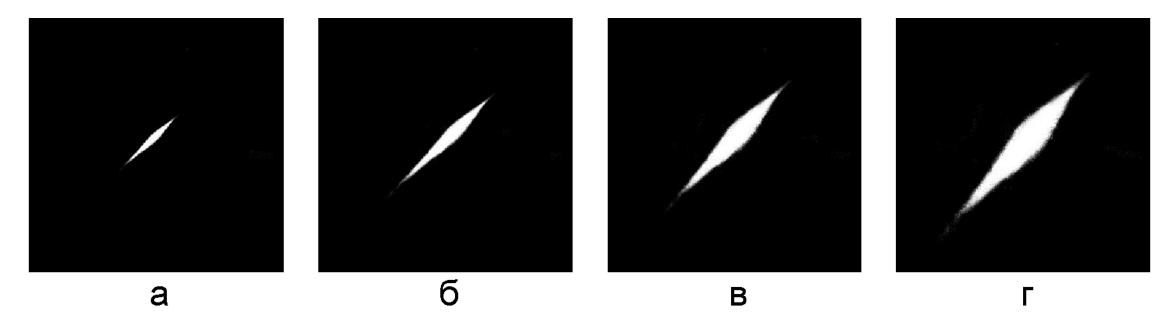


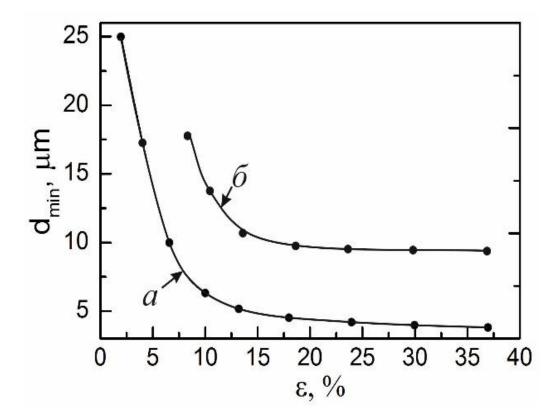
Рис. Образец

4.

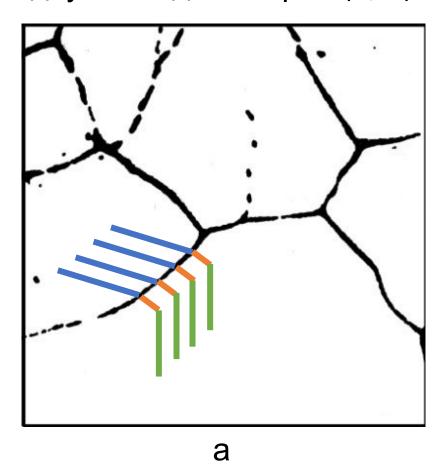
Образец


Образец 3

Образец 4



Образец 5


Рис. 5. Картины рассеяния лазерного пучка на деформационном рельефе, возникающем на полированной поверхности образца при его деформировании на:

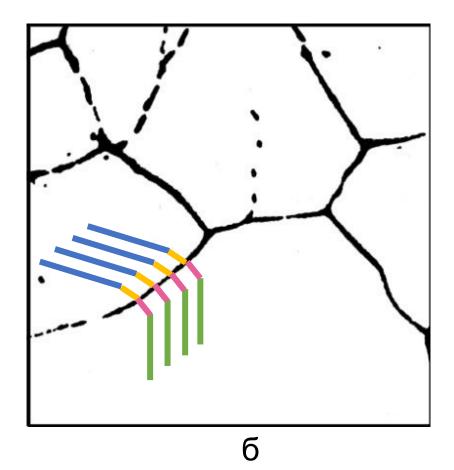

 $\varepsilon = 2\%$ (a); $\varepsilon = 10\%$ (6); $\varepsilon = 18\%$ (8); $\varepsilon = 31\%$ (2).

Рис. 6. Развитие скольжения в центральной части (а) и вблизи границы (б) одного из зёрен поликристаллического образца алюминия с благоприятной ориентацией для скольжения.

Рис. 7. Способы согласования дислокационного скольжения двух соседних зерен (а, б)

Выво

проведения экспериментальных исследований закономерности возникновения и развития дислокационного скольжения в процессе деформирования методом рекристаллизации получены крупнокристаллические образцы алюминия, содержащие сквозные границы зерен.

- 2. Экспериментально показано, что в момент возникновения скольжения линии скольжения прямолинейны, их искривление происходит в процессе развития деформации.
- 3. Экспериментально показано, что характер возникновения и развития дислокационного скольжения в центральной части зерна и вблизи его границ различны. В центральной области зерна скольжение дислокаций заметно на более ранних стадиях деформирования. Вблизи границы зерна скольжение обнаруживается на более поздних стадиях.
- 4. Впервые экспериментально обнаружены два способа согласования дислокационного скольжения двух соседних зёрен. В первом случае происходит изменение направления скольжения вблизи границы только в одном из зёрен. Во втором случае для этого необходимо изменение направления скольжения в двух зернах.

Спасибо за внимание