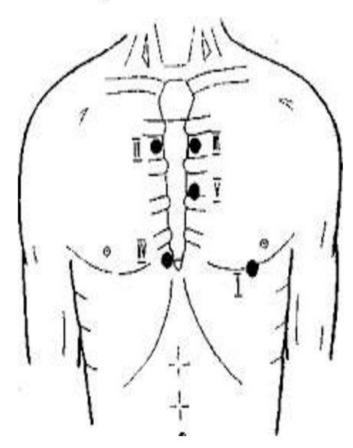
Аускультация сердца

КЛИНИЧЕСКАЯ ЛЕКЦИЯ

Пропедевтика внутренних болезней

• Тонкая аускультация сердца и оценка аускультативной картины — дело трудное


Н.Д.Стражеско

• При аускультации сердца выслушиваются звуки, возникающие в сердце при его работе (тоны, шумы)

Методика аускультации сердца

Точки аускультации сердца

- Митральный клапан (МК) верхушечный толчок или левая граница относительной сердечной тупости
- II. Аортальный клапан (АК) 2ое м/р справа от грудины
- III. Клапан лёгочной артерии (ЛА)– 2-ое м/р слева от грудины
- IV. Трикуспидальный клапан (ТК) основание мечевидного отростка
- V. Точка Боткина-Эрба дополнительная точка выслушивания аортального клапана. Уровень прикрепления хрящей 3 и 4 ребер к левой стороне грудины

Правила аускультации сердца

• Подожение больного и поднятыми руками)
Лежа на спине
Лежа на левом боку

-Аортальный клапан

Митральный клапан

При наклоне туловища вперед (шум трения перикарда на основании сердца)

- После физической нагрузки (после приседаний)
- В разные фазы дыхательного цикла, при задержке дыхания
- Непосредственно ухом и стетоскопом/ фонендоскопом

Положение больного при аускультации сердца

- Вертикальное (диастолический шум при недостаточности клапанов аорты)
- Стоя с поднятыми и скрещенными руками (аортальный клапан)
- Горизонтальное (систолический шум при недостаточности митрального клапана)
- Лежа на левом боку (диастолический шум при митральном стенозе)
- При наклоне туловища вперед (шум трения перикарда на основании сердца)

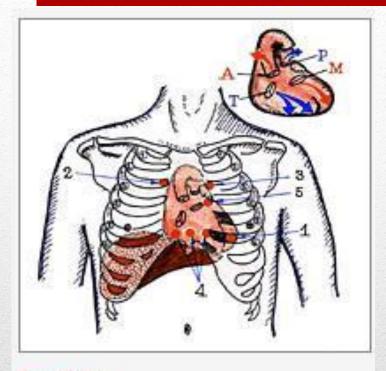
Методика аускультации сердца

• Аускультация после физической нагрузки (после приседаний)

Происходит учащение сердечных сокращений и ускорение тока крови

- Пресистолический шум при митральном стенозе
- Могут измениться функциональные шумы
- Выслушивание сердца в разных фазах акта дыхания
 - Задержка дыхания позволяет устранить звуковые явления со стороны легких (больной делает глубокий вдох, затем глубокий выдох и задерживает дыхание)

Методика аускультации сердца


- Физиологическое расщепление тонов чаще всего связано с фазами дыхания (расщепление I тона во время глубокого выдоха и II тона на вдохе)
 - (меняется внутригрудное давление и приток крови к отделам сердца)
- Дыхательная аритмия у молодых (колебания тонуса блуждающего нерва)
- Плевроперикардиальный шум трения усиливается на вдохе и ослабевает на выдохе

Методика аускультации сердца

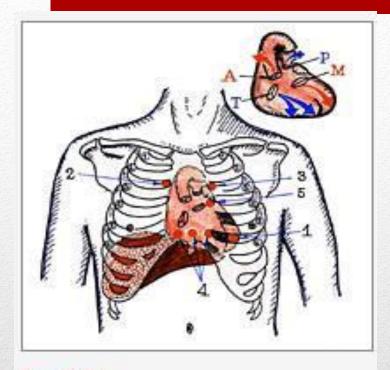
- Непосредственная аускультация (ухом)
 - Можно выслушать III тон у здоровых (Образцов В.П.)
 - Лучше выслушивается ритм галопа при тяжелых поражениях сердца
- Посредственная аускультация (стетоскопом)
 - Возможность изолировать звуковые явления с различных точек сердца

Точки аускультации сердца

• Точки выслушивания сердца зависят не только от места возникновения звуковых колебаний, но и от проведения их по току крови и прилегания к грудной стенке отдела сердца, в котором они образуются

Рис. 3.85.

Проекция клапанов сердца на переднюю грудную стенку, проведение звуков с клапанов и точки (области) аускультации сердца. 1 - верхушка сердца; 2 и 3 - II межреберье справа и слева от грудины; 4 - основание мечевидного отростка; 5 - точка Боткина-Эрба; А - аортальный, М - митральный, Т - трехстворчатый клапаны; Р - клапан легочной артерии.


Проекции клапанов на переднюю грудную стенку

Митральный клапан проецируется слева у грудины в области прикрепления IV ребра

Трехстворчатый клапан – на середине между прикреплением к грудине хряща III ребра слева и V ребра справа

Клапан легочного ствола – II межреберье слева от грудины

Клапан аорты – посередине грудины на уровне третьего ребра

Рис. 3.85.

Проекция клапанов сердца на переднюю грудную стенку, проведение звуков с клапанов и точки (области) аускультации сердца. 1 - верхушка сердца; 2 и 3 - Шмежреберье справа и слева от грудины; 4 - основание мечевидного отростка; 5 - точка Боткина-Эрба; А - аортальный, М - митралъный, Т - трехстворчатый клапаны; Р - клапан легочной артерии.

Точки аускультации сердца

Первая точка аускультации:

верхушка сердца – место выслушивания митрального клапана.

Вторая точка: II межреберье у правого края грудины – выслушивается аортальный клапан.

Третья точка: II межреберье у левого края грудины – выслушивается клапан легочной артерии.

Четвертая точка аускультации:

основание мечевидного отростка – выслушивается трехстворчатый клапан.

Пятая точка аускультации (Точка

Боткина – Эрба): место прикрепления III – IV ребра к левому краю грудины – дополнительная точка выслушивания аортального клапана

Тоны сердца

В норме у здорового человека над областью сердца выслушиваются два тона:

- I тон (систолический) возникает в начале систолы желудочков
 После I тона следует малая пауза (0,2c) период изгнания крови из желудочков
 I тон вместе с малой паузой составляет систолу желудочков
- II тон (диастолический) возникает в начале диастолы желудочков
 После II тона следует большая пауза (0,43с) кровь поступает из предсердий в желудочки

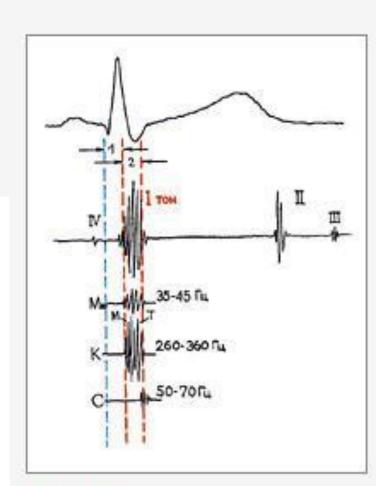
II тон вместе с большой паузой составляет диастолу желудочков

Тоны сердца

Иногда в период диастолы можно выслушать еще физиологические III и IV тоны (у детей и молодых худощавых больных):

- III тон колебания стенок желудочков при быстром пассивном заполнении их кровью в начале диастолы. Возникает через 0,12 0,15с от начала II тона
- IV тон в конце диастолы (перед I тоном) при активном наполнении желудочков за счет сокращения предсердий III и IV тоны низкочастотные, тихие лучше слышны при непосредственной аускультации.

Выявление III и IV тонов у пожилых – признак тяжелого поражения сердечной мышцы


3.2.5. АУСКУЛЬТАЦИЯ.

Тоны сердца

Начинают аускультацию сердца с выявления основных и дополнительных тонов сердца. I (систолический) тон сердца возникает преимущественно в фазу изоволюметрического сокращения желудочков (рис. 3.86 а).

Компоненты I тона сердца:

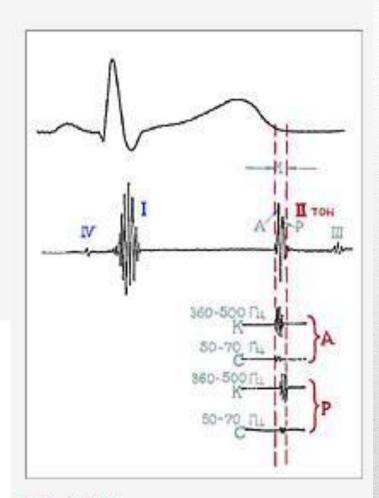
- 1. Клапанный главный компонент, связан с колебаниями створок закрывшихся атриовентрикулярных клапанов в фазу изометрического сокращения
- **2.Мышечный** (колебания миокарда желудочков во время изометрического сокращения за счет резкого подъема давления в желудочках)
- **3.Сосудистый** (колебания начальных отделов магистральных сосудов в начале изгнания крови)
- **4.Предсердный** (колебания, связанные с сокращением предсердий)

Рис. 3.86а.

Механизм возникновения I тона сердца и его основные компоненты. I тон. 1 - фаза асинхронного сокращения желудочков; 2 - фаза изоволюметрического сокращения; М - мышечный, К - клапанный, С - сосудистый компоненты I тона.

Характеристика I тона сердца в норме

- І тон лучше всего выслушивается на верхушке, а также в нижней трети грудины
- І тон возникает после длинной диастолической паузы
- Совпадает с верхушечным толчком и пульсом на сонных артериях
- І тон более продолжительный $(0,09-0,12\ c)$ и низкий, чем II тон

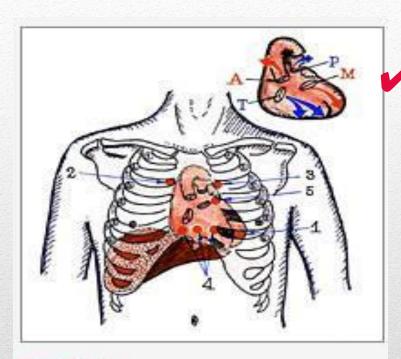

3.2.5. АУСКУЛЬТАЦИЯ.

II (диастолический) тон сердца возникает в самом начале диастолы желудочков - в протодиастолический период (рис.3.87 а,1), когда в связи с начавшимся расслаблением желудочков давление в них быстро падает и становится меньше давления в магистральных сосудах (аорте и легочной артерии). В результате поток крови в этих сосудах устремляется назад, клапаны захлопываются и в течение короткого времени (около 0,05 сек) колеблются вместе со стенками аорты и легочной артерии. Эти короткие и быстро затухающие колебания и образуют II тон сердца.

Компоненты II тона

Клапанный – колебания створок полулунных клапанов аорты и легочного ствола при захлопывании в начале диастолы

Сосудистый – колебания стенок начальных отделов этих сосудов


Рис. 3.87а.

Механизм возникновения II тона сердца: 1 - протодиастолический период; А - аортальный компонент; Р - пульмональный компонент; К - колебания полулунных клапанов, С - колебания сосудистой стенки; I, II, III и IV - тоны сердца.

Характеристика II тона сердца в норме

- ІІ тон лучше выслушивается у основания сердца
- II тон возникает после малой систолической паузы
- Не совпадает с верхушечным толчком и пульсом на сонных артериях
- II тон менее продолжительный $(0,05-0,07\ c)$ и более высокий, чем I тон

Аускультация сердца

Рис. 3.85.

Проекция клапанов сердца переднюю фудную стенку, проведение звуков с клапанов точки (области) аускультации сердца. 1 - верхушка сердца; 2 и 3 межреберье справа и грудины; 4 - основание мечевидного отростка; 5 - точка Боткина-Эрба; А аортальный, М - митралъный, Т трехстворчатый клапаны; Р - клапан легочной артерии.

У здоровых:

На верхушке сердца слышен громкий I тон, затем следует короткая пауза (систола) и менее громкий II тон, за которым следует более длинная пауза (диастола)

✓ На основании сердца II тон громче, чем I тон

- (в точке Боткина-Эрба громкость тонов примерно одинакова)

Аускультация сердца

В норме тоны сердца ясные, чистые, ритмичные, Ψ CC = 60 - 80 в мин.

Аускультативная картина при нарушениях ритма:

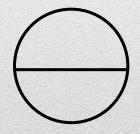
- Экстрасистолия
- Мерцательная аритмия (фибрилляция предсердий)

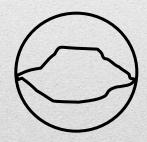
- Тахисистолическая форма
 - Брадисистолическая форма
 - Пароксизмальная тахикардия

Изменения тонов

- Ослабление основных тонов
- Усиление основных тонов
- Расщепление (раздвоение) основных тонов
- Появление добавочных тонов: патологических III и IV тонов, тона открытия митрального клапана, дополнительного систолического тона (щелчка), перикард-тона

Ослабление обоих тонов


- Чаще зависит от внесердечных причин:
 - Ожирение
 - Выраженная грудная мускулатура
 - Эмфизема легких
 - Наличие жидкости или воздуха в левой плевральной полости
 - Скопление жидкости в полости перикарда (жидкость сдавливает сердце и мешает проведению звуков)
- При патологии миокарда
 - инфаркт миокарда, кардиосклероз, миокардит, дистрофия миокарда


Усиление обоих тонов также чаще зависит от внесердечных причин

- Улучшение проведения звуков
 - Тонкая грудная клетка
 - Сморщивание краев легких
 - Опухоль в заднем средостении и приближение сердца к передней грудной стенке
 - За счет резонанса при расположении больших воздушных полостей близко к сердцу (легочная каверна, газовый пузырь желудка)
- Повышение влияния симпатической нервной системы
 - После физической нагрузки, при волнении
 - При тиреотоксикозе
- Уменьшение вязкости крови
 - При анемии

Ослабление і тона

- 1. Полное выпадение или ослабление клапанного компонента и отсутствие периода замкнутых клапанов
 - недостаточность митрального или трехстворчатого клапана

МК в норме и при митральной недостаточности

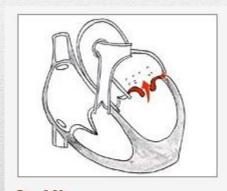
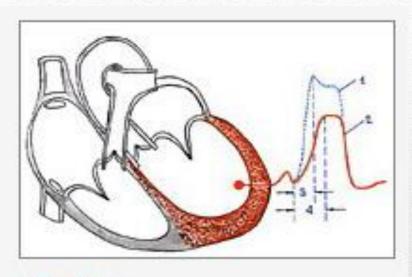
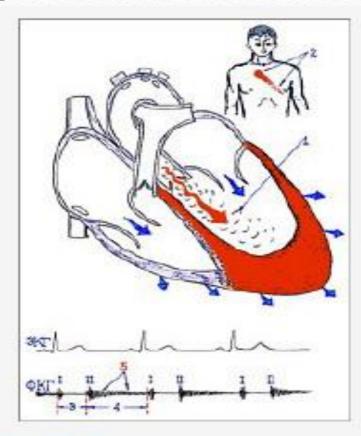



Рис. 3.88а.
Основные причины ослабления I тона сердца: отсутствие герметичности закрытия клапанов.

Ослабление І тона

- 2. Уменьшение сократительной способности миокарда (ослабление мышечного компонента):
 - Сердечная недостаточность
 - Кардиосклероз
 - Миокардит
 - Кардиомиопатия
 - Инфаркт миокарда
 - Дистрофия миокарда


Рис. 3.88б.

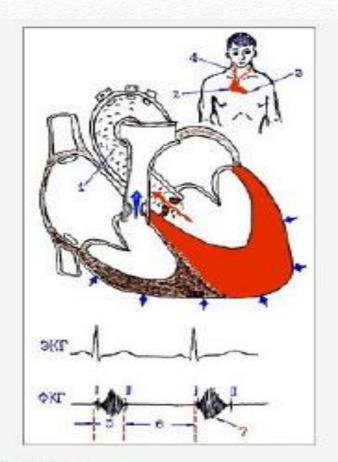
Основные причины ослабления I тона сердца: замедление изоволюметрического сокращения желудочков при снижении способности сократительной миокарда; 1 - кривые подъема внутрижелудочкового давления норме, 2 - при СН и пипертрофии миокарда; 3 - длительность фазы изоволюметрического сокращения в норме, 4 - при СН и пипертрофии миокарда.

Ослабление I тона

- з. Увеличение диастолического наполнения желудочков
 - недостаточность аортального клапана

(медленно развивается фаза изометрического сокращения, створки МК занимают более высокое положение к началу систолы)

Рис. 3.108.


Органический шум при недостаточности клапана аорты. 1 турбулентный ток крови; 2 локализация и проведение шума; 3 систола; 4 - диастола; 5 - убывающий диастолический шум, начинающийся сразу после II тона.

Ослабление I тона

- 4. Нарушение опорожнения левого желудочка в систолу
 - стеноз устья аорты

(резко удлинена фаза изгнания, медленно нарастает изометрическое сокращение за счет гипертрофии ЛЖ и переполнения его

кровью)

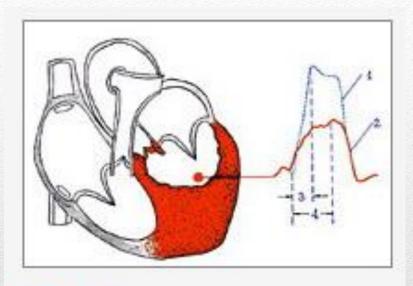


Рис. 3.107.

Органический шум при стенозе устья аорты. 1 - турбулентный ток крови; 2, 3 - локализация шума; 4 - проведение шума на сосуды шеи; 5 - систола; 6 - диастола; 7 - ромбовидный характер шума.

Ослабление І тона

- 5. Значительное снижение скорости сокращения миокарда
 - выраженная гипертрофия желудочка
 (стеноз устья аорты, артериальная гипертония)

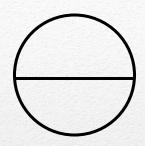
Рис. 3.88в.

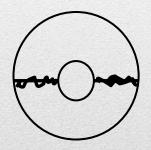
Основные причины ослабления I тона сердца: выраженной пипертрофии сердечной мышцы; 1 - кривые подъема внутрижелудочкового давления в норме, 2 - при СН и пипертрофии миокарда; 3 - длительность фазы изоволюметрического сокращения в норме, 4 - при СН и пипертрофии миокарда.

Ослабление І тона

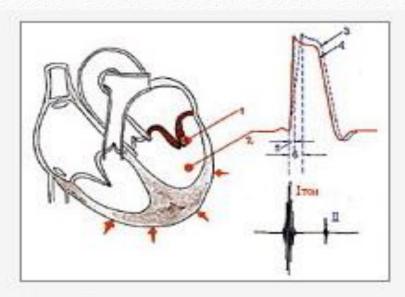
- 6. Необычное положение створок атриовентрикулярных клапанов перед началом фазы изометрического сокращения желудочков
 - Атриовентрикулярная блокада І степени

При интервале PQ>0,20 сек (AV блокада I ст.) систола предсердий заканчивается задолго до начала сокращения желудочков, и створки атриовентрикулярных клапанов за это время успевают всплыть и сомкнуться уже к началу систолы желудочков. Это ведет к уменьшению амплитуды их колебаний и ослаблению I тона.


Ослабление I тона


- Выпадение или ослабление клапанного компонента, отсутствие периода замкнутых клапанов – недостаточность митрального или трехстворчатого клапана
- Ослабление сократительной способности миокарда инфаркт миокарда, кардиосклероз, миокардит, дистрофия миокарда
- Повышение диастолического наполнения желудочков недостаточность аортального клапана
- Удлинение фазы изгнания, нарушение опорожнения левого желудочка – стеноз устья аорты
- Снижение скорости сокращения миокарда выраженная гипертрофия желудочка
- Положение створок атриовентрикулярных клапанов перед началом фазы изометрического сокращения – AV блокада I степени

Усиление і тона


- Уменьшение диастолического наполнения желудочков
 - Митральный стеноз («хлопающий» I тон)
 - Экстрасистолия, фибрилляция предсердий, тахикардия
- Увеличение скорости изометрического сокращения желудочков
 - Тахикардия при физической нагрузке, тиреотоксикозе (за счет усиления обменных процессов)
- Одновременное сокращение предсердий и желудочков
 - Полная атриовентрикулярная блокада «пушечный тон Стражеско»

Усиление і тона при митральном стенозе

Рис. 3.90б.

Причины усиления I тона сердца: при митральном стенозе; 1 - уплотнение митрального клапана и увеличение частоты его колебаний; 2 - увеличение скорости подъема давления в ЛЖ; 3 и 4 - кривые подъема давления в ЛЖ в норме (синий цвет) и при митральном стенозе (красный цвет); 5 и 6 - с о о т в е т с т в у ю щ а я продолжительность фазы изоволюметрического сокращения ЛЖ.

Ослабление II тона

На аорте

- При недостаточности клапана аорты (разрушение и рубцовое уплотнение створок)
- Стеноз устья аорты (понижение давления в аорте)

На легочной артерии

При редких пороках:

- Недостаточность клапанов легочной артерии
- Сердечная недостаточность (уменьшение истья легочной скорости закрытия полулунных клапанов при уменьшении скорости расслабления желудочков)

Ослабление II тона

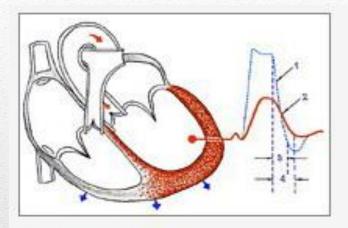



Рис. 3.91а.

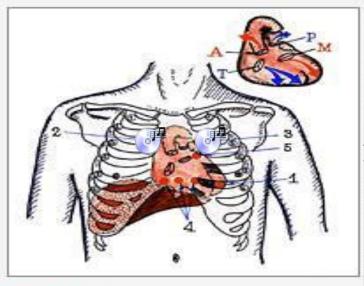
Основные причины ослабления II тона сердца: нарушение герметичности смыкания полулунных клапанов.

Рис. 3.91б.

Основные причины ослабления II тона сердца: уменьшение скорости захлопывания полулунных клапанов при СН. Показаны кривые изменения внутрижелудочкового давления, а длительность фазы также изоволюметрического расслабления желудочков в норме (1, 3) и при СН (2, 4). Увеличение длительности фазы изоволюметрического расслабления соответствует уменьшению скорости расслабления желудочков и закрытия полулунных клапанов.

Усиление (акцент) II тона —

его более громкое звучание во II межреберье справа или слева от грудины


На аорте

- Повышение артериального давления в большом круге кровообращения
- Уплотнение стенок аорты (атеросклероз)
- Атеросклероз и кальциноз створок аортального клапана

На легочной артерии

- Повышение артериального давления в малом круге кровообращения
 - а) при заболеваниях сердца (митральные пороки, незаращение Боталлова протока, левожелудочковая сердечная недостаточность)
 - б) при заболеваниях легких (эмфизема, пневмосклероз, ХОБЛ, бронхоэктатическая болезнь, туберкулез легких, плевральные спайки), деформация грудной клетки
- Склероз легочной артерии

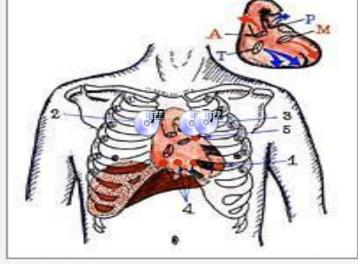

Акцент II тона

Рис. 3.85.

Проекция клапанов сердца на переднюю грудную стенку, проведение звуков с клапанов и точки (области) аускультации сердца. 1 - верхушка сердца; 2 и 3 - II межреберье справа и слева грудины; 4 - основание мечевидного отростка; 5 - точка Боткина-Эрба; А аортальный, М - митралъный, Т трехстворчатый клапаны; Р - клапан легочной артерии.

Рис. 3.85.

Проекция клапанов сердца на переднюю трудную стенку, проведение звуков с клапанов и точки (области) аускультации сердца. 1 - верхушка сердца; 2 и 3 - II межреберье справа и слева грудины; 4 - основание мечевидного отростка; 5 - точка Боткина-Эрба; А - 🗕 аортальный, М - митралъный, Т трехстворчатый клапаны; Р - клапан легочной артерии.

Раздвоение I тона

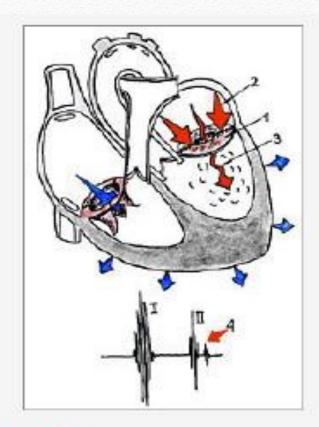
При неодновременном закрытии двустворчатого и трехстворчатого клапанов

- Физиологическое во время глубокого выдоха
- Патологическое при блокаде одной из ножек пучка Гиса

Раздвоение II тона

Расщепление или раздвоение II тона — признак неодновременного закрытия полулунных клапанов аорты и легочного ствола, обусловленного неодинаковой продолжительностью систолы левого и правого желудочка.

О раздвоении II тона говорят, если части раздвоенного тона воспринимаются как два самостоятельных тона.


Раздвоение II тона наблюдается:

- При уменьшении или увеличении кровенаполнения одного из желудочков
- При изменении давления в аорте или легочной артерии

Раздвоение II тона

- **Физиологическое** связано с фазами дыхания (в начале вдоха)
- Патологическое
 - Отставание захлопывания аортального клапана (гипертензия в большом круге кровообращения, стеноз устья аорты, блокада левой ножки пучка Гиса)
 - Отставание закрытия клапана легочного ствола (повышение давления в малом круге митральный стеноз, эмфизема легких; гипертрофия и дилатация правого желудочка; ДМПП; блокада правой ножки пучка Гиса)

Тон открытия митрального клапана

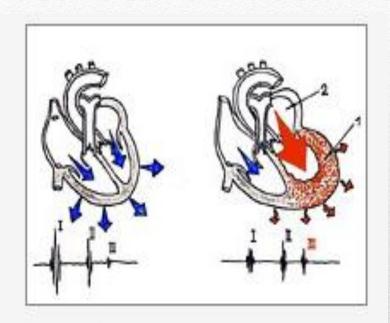


Рис. 3.101.

Механизм возникновения тона (щелчка) открытия митрального клапана. 1 - сращение створок митрального клапана; 2 - удар порции крови о сросшиеся створки клапана; 3 - турбулентный ток крови в период быстрого наполнения желудочков; 4 - тон открытия митрального клапана.

- •Появляется при митральном стенозе
- •Возникает в диастолу через 0,07 0,13 сек после II тона
- •Выслушивается на верхушке, создавая трехчленный ритм «перепела»: хлопающий I тон, II тон, тон открытия митрального клапана

III тон сөрдца

Рис. 3.96.

Основные причины возникновения III тона: физиологического (а) и патологического (б). 1-поражение миокарда левого желудочка, ведущее к уменьшению скорости расслабления; 2 - увеличение объема предсердия.

III тон сердца появляется в конце фазы быстрого пассивного наполнения желудочков

Патологический III тон связан с

- •Поражением миокарда ЛЖ, ведущим к изменению диастолического тонуса желудочка
- •Увеличением объема предсердия

Причины появления патологического III тона

- Значительное снижение сократительной способности (и диастолического тонуса) миокарда (хроническая сердечная недостаточность, инфаркт миокарда, миокардит и т.п.)
- Пороки сердца, декомпенсированные (недостаточность митрального и трехстворчатого клапанов – перегрузка объемом)

ГИ ТОН СОРДЦА

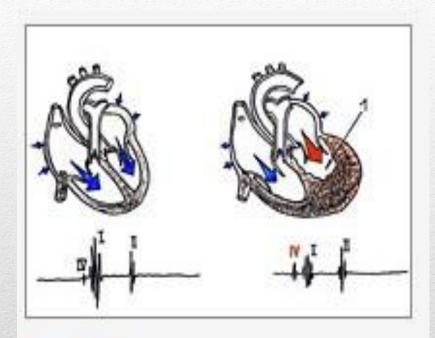
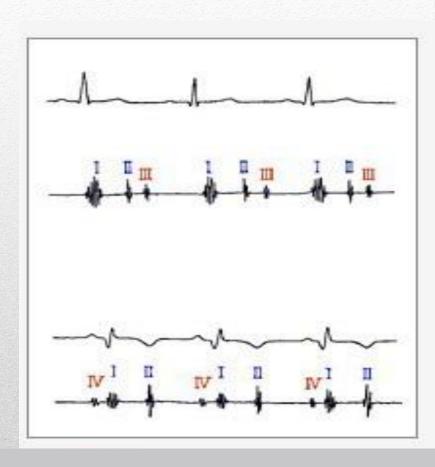


Рис. 3.97.

Основные причины возникновения IV тона сердца: физиологического (а) и патологического (б). 1- повышение конечного диастолического давления в желудочке. IV тон сердца связан с активным наполнением желудочков во время систолы предсердий (желудочки оказывают сопротивление заполняющей их крови)

Патологический IV тон связан с нарушением тонуса желудочков, повышением конечного диастолического давления в желудочке

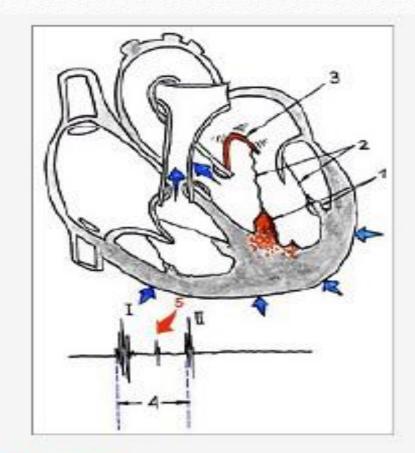
Причины появления патологического IV тона


- Значительное снижение сократительной способности миокарда (сердечная недостаточность, инфаркт миокарда, миокардит и т.п.)
- Выраженная гипертрофия миокарда (стеноз устья аорты, гипертоническая болезнь и т.д.)

Ритм галопа — «крик сердца о помощи»

Протодиастолический ритм галопа – за счет патологического III тона (через 0,12 – 0,15 сек после II тона)

Пресистолический ритм галопа – за счет патологического IV тона


Мезодиастолический (суммированный) ритм галопа – III и IV тон сливаются друг с другом при тахикардии

Выслушивается на верхушке или в III – IV межреберье, лучше – в положении лежа на левом боку, никуда не проводится. Лучше слышен при непосредственной аускультации.

Причины появления патологического III и IV тона (ритм галопа)

• Значительное снижение сократительной способности (и диастолического тонуса) миокарда (хроническая сердечная недостаточность, инфаркт миокарда, миокардит и т.п.)

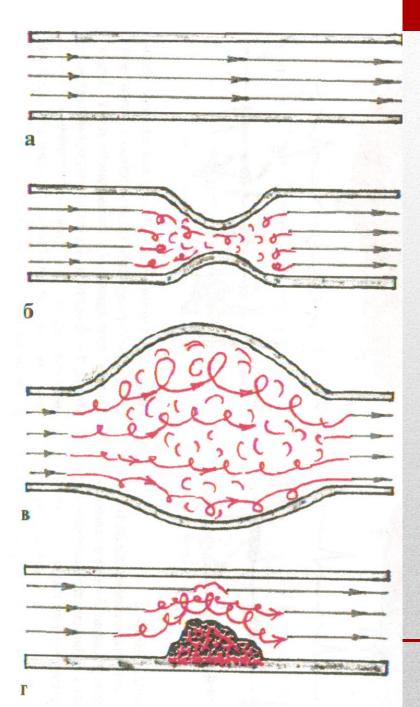
Рис. 3.100.

Механизм возникновения дополнительного систолического тона при пролапсе митрального клапана. 1 - папиллярная мышца; 2 - хорда; 3 - створка митрального клапана; 4 - систола желудочков; 5 - мезосистолический тон.

Систолический щелчок (экстратон) при пролапсе митрального клапана

Систолический щелчок при уплотнении аорты (аортальный тон изгнания)

- В самом начале периода изгнания порция крови ударяет в уплотненную стенку восходящей аорты (ранний систолический щелчок)
- Наблюдается при гипертонической болезни, атеросклерозе аорты


Перикард-тон

- Возникает при сращениях перикарда
- Связан с колебаниями перикарда при быстром расширении желудочков в начале диастолы
- Появляется во время диастолы, через 0,08 0,14 с после II тона (может также возникать и в период систолы)

- Движение крови через полости здорового сердца, его физиологические отверстия происходит только с образованием тонов.
- Дополнительные звуковые явления, выслушиваемые над областью сердца, называются шумами

Шумы сердца

- **Шумы сердца** сравнительно продолжительные звуки, возникающие при турбулентном движении крови.
- Турбулентность появляется при нарушении нормального соотношения 3-х параметров:
 - 1. диаметра клапанного отверстия или просвета сосуда
 - 2.скорости кровотока
 - 3.вязкости крови

Механизмы возникновения шумов:

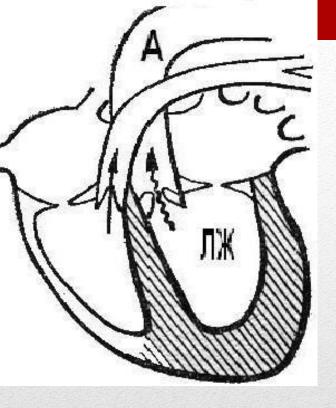
а) ламинарное движение крови в норме;

турбулентный ток крови при сужении (б), расширении (в) просвета сосуда или появлении другой преграды на пути кровотока (г).

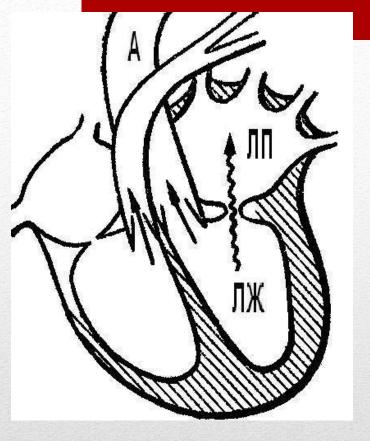
Шумы сердца

- Интракардиальные (непосредственно связанные с работой сердца)
- √ органические (клапанные и мышечные)
- √функциональные (скоростные, анемические, дистонические)
- √ шумы относительной недостаточности клапанов
 - <u>ЭКСТРАКАРДИАЛЬНЫе</u> (перикардиальные, плеврокардиальные)

Пороки по типу анатомического поражения


- **Недостаточность клапана** деформация створок и уменьшение их площади ведет к неплотному закрытию отверстия и обратному току крови (регургитации)
 - Недостаточность митрального и трикуспидального клапанов (систолический шум)
 - Недостаточность клапанов аорты и легочного ствола (диастолический шум)
- **Стеноз отверстия** сращение створок клапанов между собой, в связи с чем невозможно их полное раскрытие
 - Стеноз левого и правого атриовентрикулярного отверстия (диастолический шум)
 - Стеноз устья аорты и легочной артерии (систолический шум)
- **Наличие аномальных отверстий** (в межпредсердной и межжелудочковой перегородке)

Характеристики шумов сердца


- Отношение шума к фазам сердечной деятельности (систолический, диастолический)
- Обл. максимального выслушивания
- Проведение шума
- Тембр, громкость шума,
- Форма шума

Ортанические шумы

- Возникают вследствие грубого органического поражения клапанов и других анатомических структур сердца (межжелудочковой и межпредсердной перегородки)
- Наблюдаются при пороках сердца:
 - Приобретенных
 - ревматический эндокардит (митральный, аортальный клапаны)
 - бактериальный эндокардит (аортальный, митральный клапаны)
 - висцеральный сифилис (аорта и клапан аорты)
 - атеросклероз аорты (клапан аорты) и т.д.
 - Врожденных (встречаются реже)

• (шумы изгнания) при сужениях устья аорты, устья легочной артерии систолический шум производится током изгоняемой из желудочков крови, идущей в обычном направлении - вперед, в крупные сосуды Выслушиваются они в точках аускультации аорты и легочной артерии.

(шумы регургитации)

систолический шум при недостаточности митрального и трикуспидального клапанов вызывается током крови во время систолы желудочков не в обычном направлении - а в обратном - из желудочков сердца в предсердия через недостаточно закрытые клапанные отверстия

CHETOTHY OCKNOUTS

- Выслушиваются вместе или после I тона, во время короткой систолической паузы, совпадает с верхушечным толчком и пульсом сонной артерии
- Могут быть органическими и функциональными
- Органические систолические шумы:
 - при митральной недостаточности
 - при стенозе устья аорты
 - при стенозе устья легочной артерии
 - при недостаточности трехстворчатого клапана
 - при дефекте межжелудочковой перегородки (в III IV межреберье по левому краю грудины)
 - при коарктации аорты сужение перешейка аорты (в точке проекции аорты и точке Боткина Эрба)
 - при незаращении Боталлова протока (грубый систолодиастолический шум во H – HI межреберье слева от грудины)

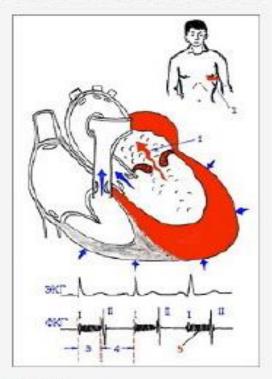
• Систолические шумы наиболее интенсивны в самом начале систолы, затем постепенно ослабевают - убывающие шумы (decrescendo),


т.к. ток крови через суженное отверстие наиболее быстрый в самом начале систолы.

Диастолические шумы (органические)

- Выслушиваются после II тона, во время длинной диастолической паузы, не совпадают с верхушечным толчком
- По отношению к фазам диастолы:
 - Протодиастолические
 - Мезодиастолические
 - Поздние диастолические (пресистолические)
- Основные причины:
 - Митральный стеноз
 - Аортальная недостаточность
 - Недостаточность клапана легочного ствола
 - Стеноз правого атриовентрикулярного отверстия

Органические диастолические шумы


- 1. протодиастолические, возникающие в начале диастолы, сразу после 2 тона;
- 2. мезодиастолические, выслушиваемые в середину диастолы;
- 3. пресистолические, появляющиеся в конце диастолы перед 1 тоном.

изображение Схематическое некоторых органических внутрисердечных шумов, а - шумы отсутствуют; 6 короткий убывающий протосистолический; в короткий нарастающе-убывающий мезосистолический; г - поздний систолический шумы; д, е - два варианта голосистолических шумов, занимающих всю систолу (лентообразный и веретенообразный, или ромбовидный); ж - убывающий протодиастолический и нарастающий пресистолический шумы; продолжительный голодиастолический (занимающий всю диастолу); и - непрерывный систоло-диастолический шум.

Органический систолический шум

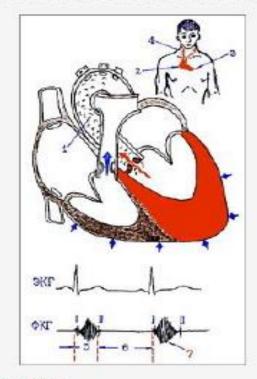

при недостаточности митрального **клапана**

Рис. 3.105.

Органический шум при недостаточности митрального клапана. 1 - турбулентный ток крови; 2 - локализация шума; 3 - систола; 4 диастола; 5 - лентовидный систолический шум.

при стенозе устья аорты

Рис. 3.107.

Органический шум при стенозе устья аорты. 1 - турбулентный ток крови; 2, 3 - локализация шума; 4 - проведение шума на сосуды шеи; 5 - систола; 6 диастола; 7 - ромбовидный характер шума.

Органический диастолический шум

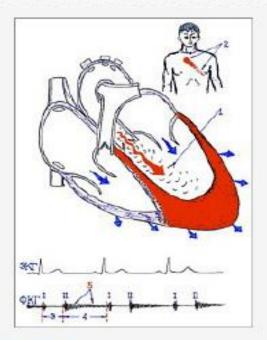

При митральном стенозе

Рис. 3.106.

Органический шум при стенозе левого атриовентрикулярного отверстия. 1 - турбулентный ток крови; 2 - локализация шума; 3 - систола; 4 - диастола; 5 - тон открытия митрального клапана; 6 - убывающий диастолический шум, отстоящий от II тона; 7 - пресистолическое усиление диастолического шума.

При недостаточности аортального клапана

Рис. 3.108.

Органический шум при недостаточности клапана аорты. 1 - турбулентный ток крови; 2 - локализация и проведение шума; 3 - систола; 4 - диастола; 5 - убывающий диастолический шум, начинающийся сразу после II тона.

Функциональные шумы

• В основе их лежат не грубые нарушения анатомических структур, а изменения функции клапанного аппарата, ускорение движения крови через анатомически неизмененные отверстия или снижение вязкости крови

Функциональные шумы

- 1. Динамические шумы связаны с увеличением скорости кровотока при отсутствии органических заболеваний сердца (тиреотоксикозе, лихорадке, неврозе сердца, тахикардии)
- 2. Анемические шумы обусловлены уменьшением вязкости крови и ускорением кровотока у больных с анемией
- 3. Дистонические шумы связаны с нарушением регуляции сердечной деятельности. При этом может измениться тонус папиллярных мышц и сухожильных нитей, что ведет к уменьшению натяжения створок клапанов (пролапс митрального клапана, феномен «порхающей хорды»)

Функциональные шумы

- 4. Образование **ложных хорд** (движутся током крови и дают шум)
- 5. Диспропорция роста камер сердца и магистральных сосудов (у детей и подростков)
- 6. Связанные с движениями легочного ствола вокруг аорты при систоле правого желудочка

Пролапс митрального клапана

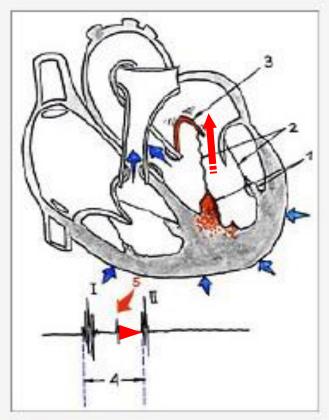


Рис. 3.100.

Механизм возникновения дополнительного систолического тона при пролапсе митрального клапана. 1 - папиллярная мышца; 2 - хорда; 3 - створка митрального клапана; 4 - систола желудочков; 5 - мезосистолический тон.

Сердечные шумы

Признаки шума	Органический шум	Функциональный шум
Отношение к фазам сердечного цикла	Систолический и диастолический	Систолический
Точка выслушивания	В зависимости от пораженного клапана	Часто – на легочной артерии и верхушке
Возраст больных	У молодых и пожилых	Чаще у молодых (детей, подростков)
Характер	Грубый	Нежный, мягкий
Громкость	Громкий	Тихий

Сердечные шумы

Признаки шума	Органический шум	Функциональный шум
Длительность	Продолжительный	Короткий
Иррадиация	Проводится за пределы сердца	Не проводится за пределы области сердца
Изменчивость в зависимости от положения тела, физической нагрузки	Не исчезает	Может исчезать или усиливаться
Другие признаки порока	Изменение границ сердца, сердечных тонов и другие признаки порока, Эхо-КГ	Отсутствуют

Шумы относительной недостаточности клапанов или относительного сужения клапанных отверстий связаны с нарушениями функции клапанного аппарата, в том числе при органических заболеваниях сердца

- Эти шумы возникают при анатомически неизмененных клапанах сердца и отсутствии изменений реологических свойств крови.
- Их чаще связывают с расширением клапанных колец (при выраженной гипертрофии камер сердца и дилятации миокарда).
- Сами клапаны при этом не изменены и не в состоянии закрыть клапанное отверстие в фазу систолы желудочков. Возникает относительная недостаточность клапана. Часть крови возвращается в предсердие и вызывает появление шума.

Экстракардиальные шумы

возникают при поражении соседних с сердцем органов

Шум трения перикарда

(при отложении фибрина на листках перикарда)

- Грубый, скребущий
- Выслушивается в зоне абсолютной тупости и на основании сердца
- Не проводится в другие области
- Усиливается при надавливании стетоскопом

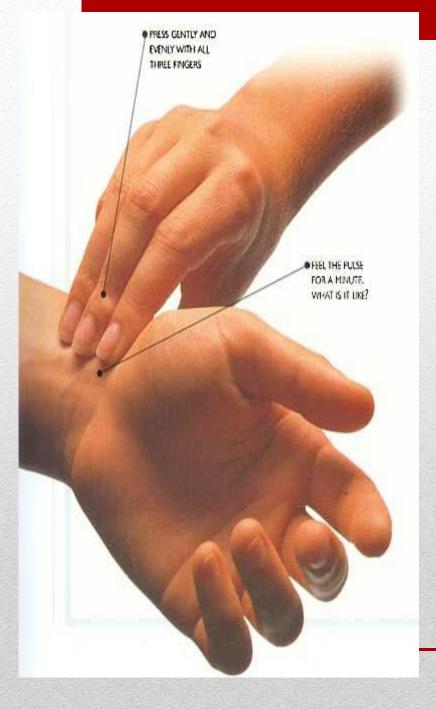
Плеврокардиальный шум (при сухом плеврите в зоне прилегания плевры к сердцу)

- Усиливается во время вдоха
- Выслушивается по левому контуру сердца

Определение и виды пульса.

• Пульс (от лат. pulsus — удар, толчок) — толчкообразные колебания стенок артерий, связанные с сердечными циклами. В более широком смысле под пульсом понимают любые изменения в сосудистой системе, связанные с деятельностью сердца, поэтому в клинике различают артериальный, венозный и капиллярный пульс.

Виды пульса:


- Артериальный колебание стенок артерий, то есть таких сосудов, которые несут кровь от сердца ко всем внутренним органам человека.
- Венозный сокращение вен, которые проталкивают кровь от органов к сердцу.
- Капиллярный. Данный пульс также имеет место быть, так как даже мельчайшие сосуды испытывают некоторые колебания от сокращений сердечной мышцы. Но определять пульс по капиллярным колебаниям нежелательно из-за множества помех. Кроме того, давление крови в капиллярах меняется незначительно, и заметить можно только лишь большие перемены.

Свойства пульса.

- 1. Частота пульса.
- 2. Ритмичность.
- 3. Быстрота.
- 4. Напряжение.
- 5. Наполнение или амплитуда.

Где измеряется пульс?

- Запястье руки. Пульсация лучевой артерии.
- На локтевой артерии. Локтевой сгиб, на плечевой артерии.
- Подмышечная впадина.
- В районе виска над бровью, где видна височная артерия.
- Шея, в месте прохождения сонной артерии. Край нижней челюсти и угол рта в этих местах прощупывается лицевой пульс.
- Пах, имеется в виду внутренняя сторона бедра. Здесь прощупывается бедренный пульс.
- Под коленом. Измерить пульс можно в ямке сгиба ноги, там, где проходит подколенная артерия, конечность в момент измерения не сгибать.
- Стопы ног. Над сводом стопы, посередине или сзади.

Алгоритм измерения пульса.

- Для получения достоверных данных следует исключить влияние негативных факторов. Пульс не измеряют:
- если человек находится в состоянии эмоционального возбуждения;
- после принятия горячей ванны или плаванья в бассейне;
- после физических нагрузок;
- после плотного приема пищи или когда человек голоден.

Все перечисленные факторы влияют на частоту сокращений сердечной мышцы, соответственно полученные показатели будут значительно искажены. Также следует учитывать то, что пульс у человека в момент пробуждения и непосредственно перед отходом ко сну значительно замедляется, а во второй половине дня достигается максимум. Соответственно измерения нужно проводить по истечении 2 часов после пробуждения. Выполнять измерения нужно в положении лежа, в утренние часы. Пациент должен находиться в комфортном эмоциональном состоянии.

В домашних условиях пульс можно измерять самостоятельно или обратиться за помощью к родственникам. Алгоритм измерения достаточно прост:

в первую очередь необходимо освободить предплечье пациента от стесняющей одежды;

человек должен принять горизонтальное положение;

необходимо подготовить секундомер и установить его так, чтобы человеку, производящему замер, было удобно наблюдать за отсчетом времени;

прижать тремя пальцами одновременно лучевую артерию на руке пациента; замеры лучше выполнять на левой руке, данные показатели считают наиболее достоверными;

почувствовав пульсацию, необходимо начать отчет времени; пульс иногда измеряется в течение 15-30 секунд, в зависимости от этого полученное значение следует умножить на 2 или на 4, чтобы получить результат;

если пульс больного неритмичный, считать удары нужно обязательно в течение минуты.

Норма и отклонения от нормы.

- У здоровых лиц нормальный пульс составляет 60-90 ударов в минуту.
- Учащение пульса называется тахикардией (выше 100—110-ти ударов в минуту).
- Низкие показатели пульса называются брадикардией (от 60-ти сердцебиений в минуту и меньше).

НОРМЫ ПУЛЬСА ПО ВОЗРАСТАМ

Возраст человека	Минимально допустимое значение пульса	Максимально допустимое значение пульса	Средний показатель пульса
Период новорожденности (от 0 до 1 месяца)	110	170	140
От 1 до 12 мес.	102	162	132
От 1 до 2 лет	94	154	124
От 4 до 6 лет	86	126	106
От 6 до 8 лет	78	118	98
От 8 до 10 лет	68	108	88
От 10 до 12 лет	60	100	80
От 12 до 15 лет	55	95	75
От 15 до 50 лет	60	80	70
От 50 до 60 лет	64	84	74
От 60 до 80 лет	69	89	79

аргериального давления

Артериальным давлением (АД)

• Называют давление, образующееся в артериальной системе во время работы сердца

Систолическое АД (сАД)

• Максимальное, возникает в артериях вслед за систолой левого желудочка и соответствует максимальному подъему пульсовой волны

Диастолическое АД (дАД)

• Поддерживается в артериях в диастолу благодаря их тонусу и соответствует спадению пульсовой волны

Пульсовое давление

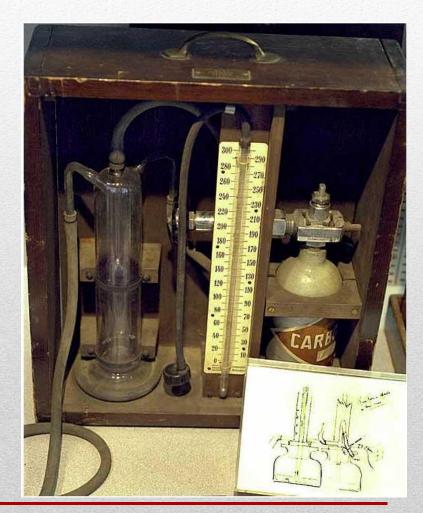

• Это разница между величинами систолического и диастолического АД

АД зависит от

- Величины ударного объема
- Общего периферического сосудистого сопротивления
- ОЦК
- ЧСС

Измерение АД

• Прямой, инвазивный метод: введение датчика манометра непосредственно в кровяное русло (крупные сосуды, полости сердца)

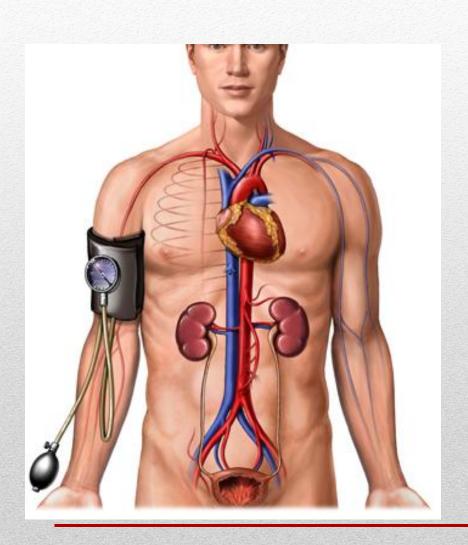

• Непрямой, аускультативный, предложенный в 1905г русским хирургом Николаем Сергеевичем Коротковым с использованием сфигмоманометра Рива-Роччи

Измерение АД

Сфигмоманометр

• Состоит из ртутного или пружинного манометра, соединенного с манжетой и резиновой грушей

Правила измерения АД


- Проводят в положении человека лежа или сидя
- Пациент должен сесть на стул с прямой спинкой, опереться на нее, расслабить ноги и не скрещивать их, руку положить на стол

• Такое положение исключает подъем АД вследствие изометрического мышечного сокращения

• Измерять АД рекомендуется через 1 — 2 часа после приема пищи и не ранее чем через 1 час после употребления кофе или курения

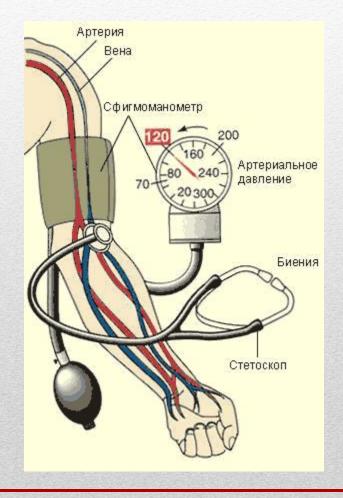
• Манжета сфигмоманометра (ее внутренняя, резиновая часть) должна охватывать не менее 80% окружности плеча и покрывать 2/3 ее длины

- Необходимо произвести не менее 3-х измерений с интервалом не менее чем в 5 мин
- За величину АД принимают среднее значение, вычисленное из полученных за 2 последних измерения

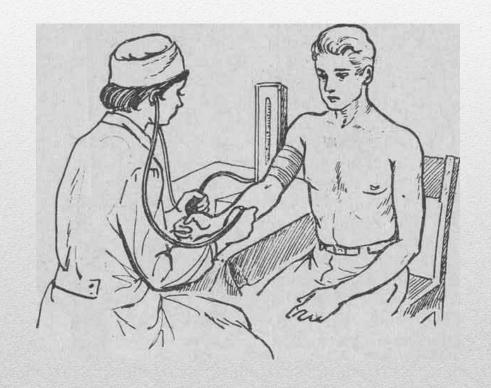
- Предложить пациенту принять удобное положение (лежа или сидя на стуле)
- Рука пациента должна лежать свободно, ладонью вверх

- Наложить на плечо пациента манжету сфигмоманометра на уровне его сердца
- Середина манжеты должна примерно соответствовать уровню IV межреберья

• Нижний край манжеты с местом выхода резиновой трубки должен находиться примерно на 2 – 2,5 см выше локтевого сгиба


Как «туго» накладывать манжету?

• Так, чтобы между плечом больного и манжетой можно было бы провести один палец



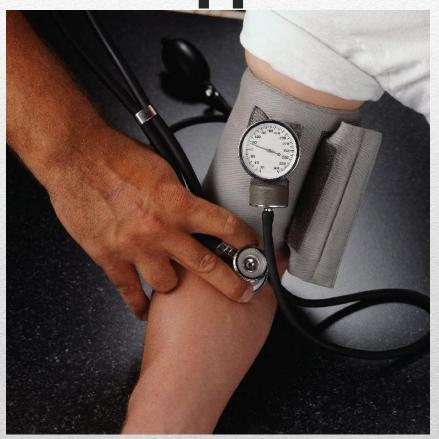
• Середина баллона манжеты должна находиться точно над пальпируемой артерией, а расположение резиновой трубки не должно мешать аускультации артерии

• Соединить трубку манжеты с трубкой манометра

• В локтевую ямку над плечевой артерией, которую находят по ее пульсации, устанавливают фонендоскоп

• Нажатием груши при закрытом вентиле начинают нагнетать воздух в манжету до тех пор, пока величина давления в манжете не будет примерно на 30 – 40 мм рт. ст. превышать уровень давления, при котором исчезает пульсация плечевой артерии

- Приоткрыть вентиль и постепенно стравливать воздух из манжеты со скоростью 2 мм рт. ст. в 1 секунду, одновременно проводя аускультацию (выслушивание) плечевой артерии
- Замедление выпускания воздуха занижает значения АД


Систолическое АД

Соответствует появлению первых звуков (тонов Короткова)

Диастолическое АД

• Соответствует исчезновению тонов Короткова

Особенности звуковых феноменов

• Тоны могут пропадать и появляться вновь, поэтому необходимо ориентироваться на «самую верхнюю» границу в случае сАД и на «самую нижнюю» границу в случае дАД

Бесконечный тон

• В этом случае выслушивается только систолическое АД, раз появившись, звуки не исчезают до нуля (пишем 120 и 0)

Классификация уровней АД

Классификация уровней АД (Рекомендации ВНОК 2008)

Категория	Систолическое АД	Диастолическое АД
Оптимальное	Менее 120	Менее 80
Нормальное	Менее 130	Менее 85
Высокое нормальное	130-139	85-89
1 степень АГ	140-159	90-99
2 степень АГ	160-179	100-109
3 степень АГ	≥180	≥110
Изолированная систолическая АГ	≥140	Менее 90