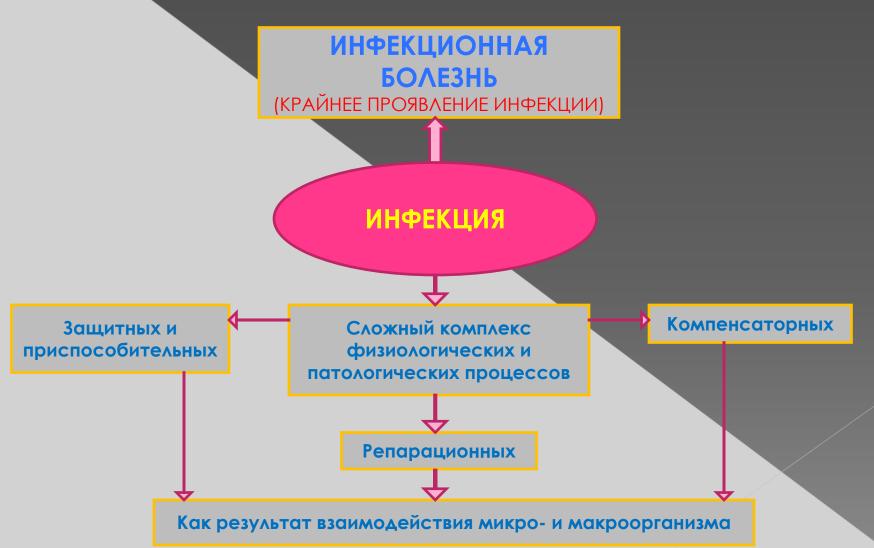
УЧЕНИЕ ОБ ИНФЕКЦИИ


ИНФЕКЦИОННЫЕ БОЛЕЗНИ

ПНФЕКЦИЯ – сложный комплекс взаимо-действия микроорганизма и макроорганизма в определённых условиях внешней и социальной сред, включающий динамически развивающиеся патологи-ческие, защитноприспособительные и компенсатор-ные реакции.

ИСТОРИЧЕСКАЯ СПРАВКА

- 1. Представления древних о заразности некоторых заболеваний и их профилактике.
- 2. 1954 г. Опубликовано исследование «О заразительности болезней и их лечении в трёх книгах» (проф. Фрокастро).
 - 3. 1672 г. Издан «травник», содержащий рецепты для лечения заразных заболеваний (Флоринский).
- 4. 1632-1723 гг. Выявлены невидимые простым глазом живые существа в зубном налёте, в застоявшейся воде благодаря изобретению микроскопа (Левенгук).
- 5. 1744-1805 гг. Доказана заразительность чумы (Самойлович).
- 6. 1782 г. Обнаружен под микроскопом возбудитель чумы (Самойлович).
- 7. В XIX веке получил международное распространение термин «инфекционная болезнь».
- 8. 1857-1865 гг. Доказана роль микроорганизмов в процессе брожения, гниения, развития инфекционных заболеваний (Пастер).
- 9. 1882-1883 гг. Обнаружены и описаны возбудители холеры и туберкулёза (Кох).
- 10. 1892 г. Открыт вирус, поражающий листья табака (Ивановский).
- 11. 1898 г. Открыт вирус ящура у животных (Леффлер и Фрош
- 12. 1908 г. Показана важная роль макроорганизма в развитии инфекционных заболеваний наряду с микроорганизмом (Эрлих, Мечников).
- 13. 1983 г. Открытие вируса СПИДа (Монтанье, Галло).

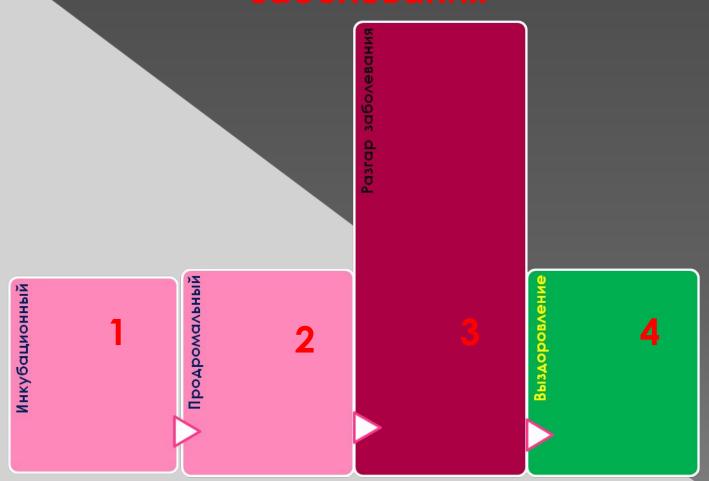
ИНФЕКЦИОННЫЙ ПРОЦЕСС И БОЛЕЗНЬ

ИНФЕКЦИОННЫЕ БОЛЕЗНИ

ОСОБЕННОСТИ ИНФЕКЦИОННЫХ ЗАБОЛЕВАНИЙ

Периоды развития инфекционного заболевания

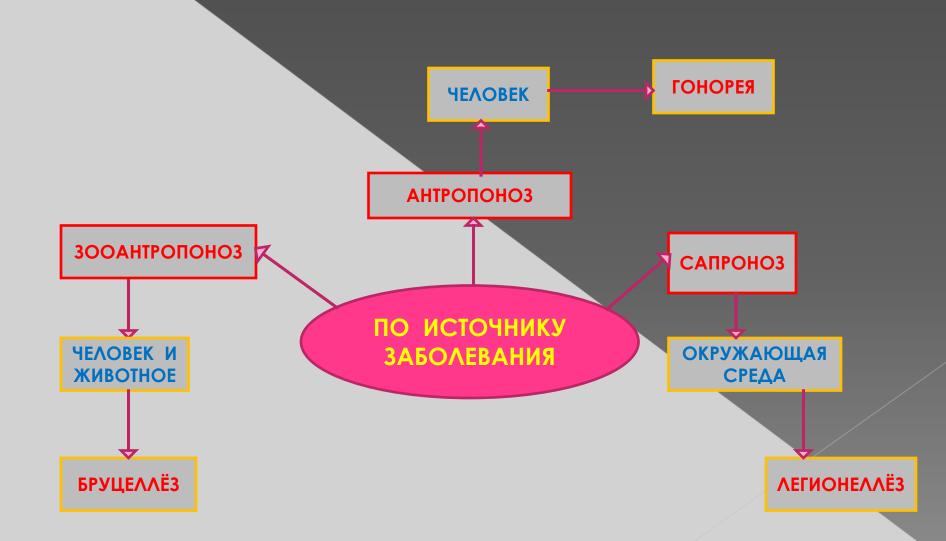
1. Инкубационный: от начала проникновения микроорганизмов до первых симптомов заболевания.

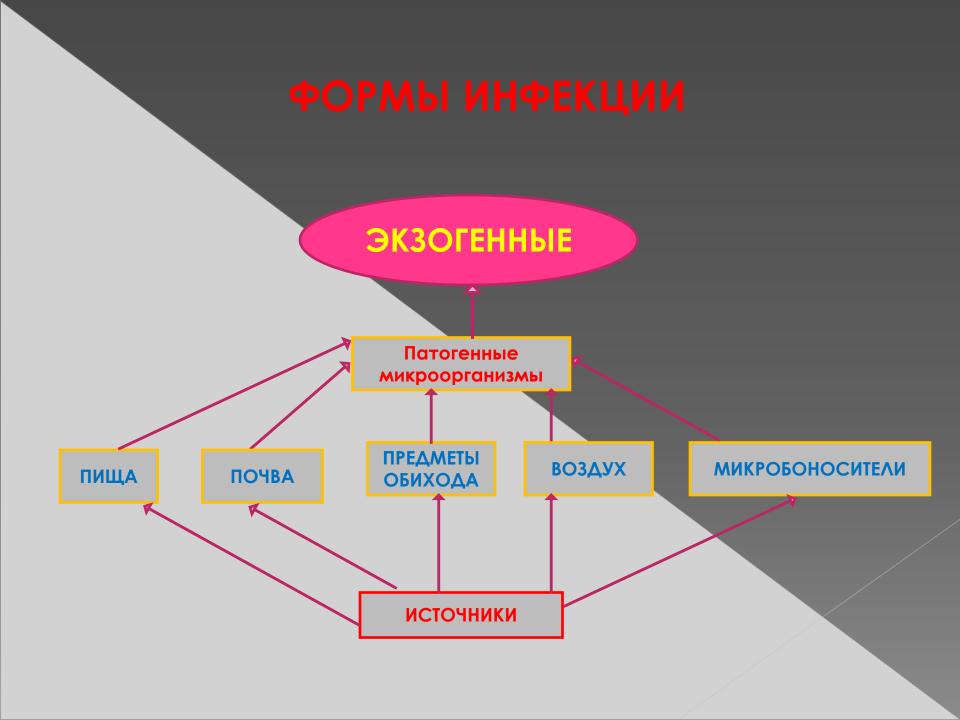

Длительность зависит от:

- а) быстроты размножения возбудителей;
- б) особенностей токсических продуктов возбудителей;
- в) реактивности макроорганизма.
- 2. Продромальный: 4-5 суток.
- 3. Клинический (разгар болезни): от нескольких дней (грипп) до нескольких лет (проказа).

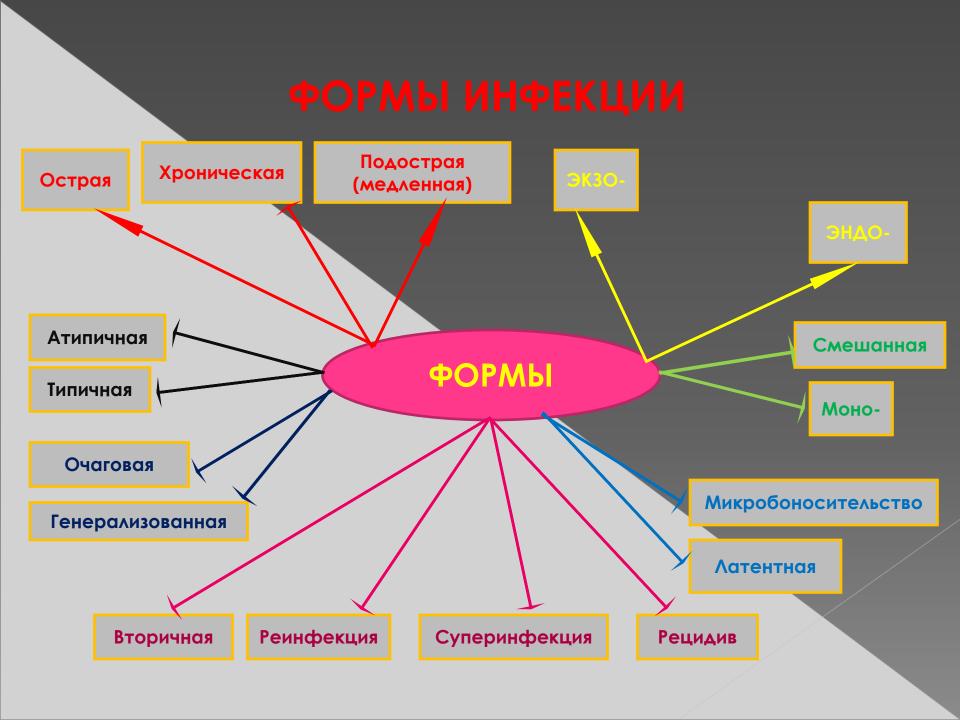
Проявление: лихорадка, воспаление, поражение ЦНС, сердечнососудистой системы, органов дыхания, пищеварения, половых органов и др.

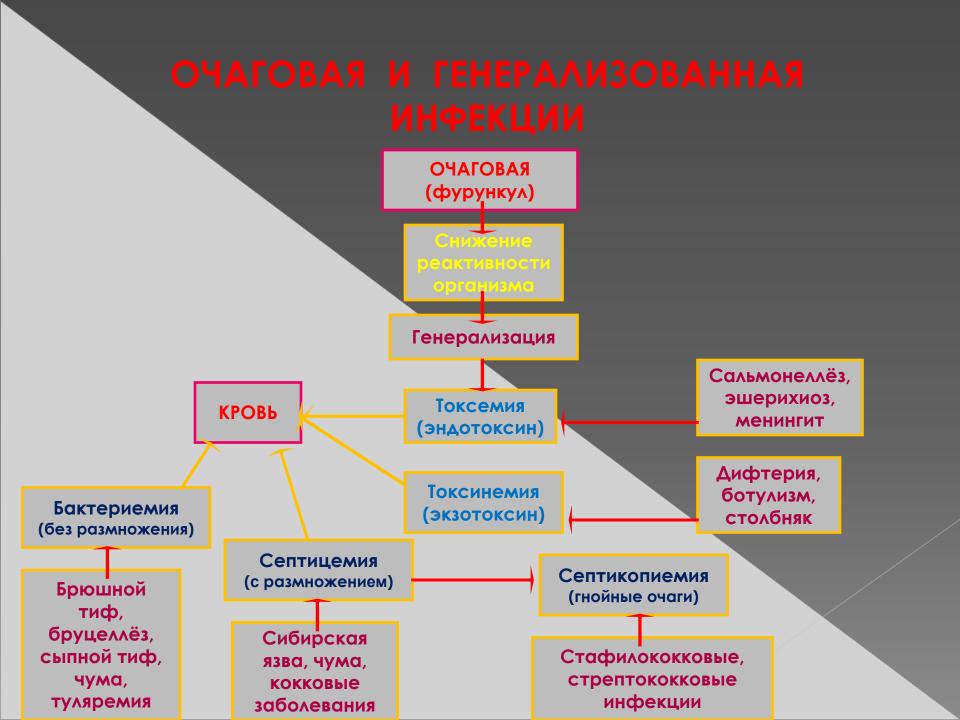
4. Выздоровление:

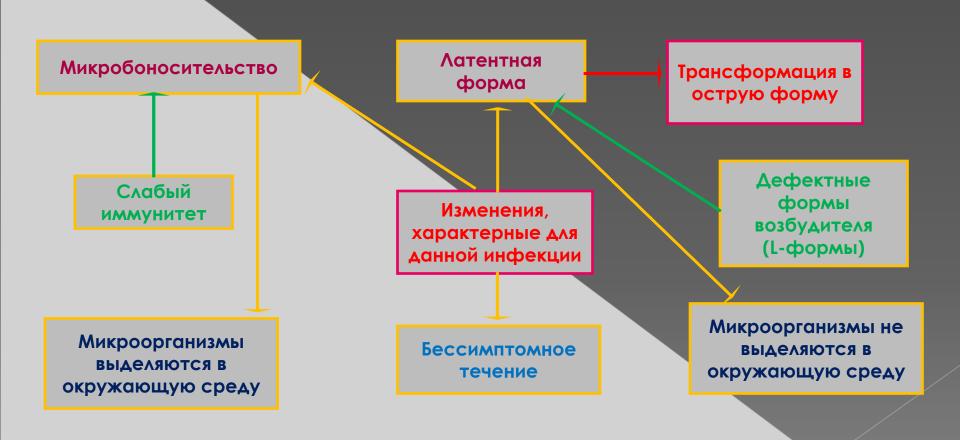

- уменьшение частоты и выраженности симптомов;
- снижение температуры тела,
- потоотделение и др.



Клинические проявления: 1. Отсутствуют. 2. Неспецифические. 3. Специфические. Уменьшаются.



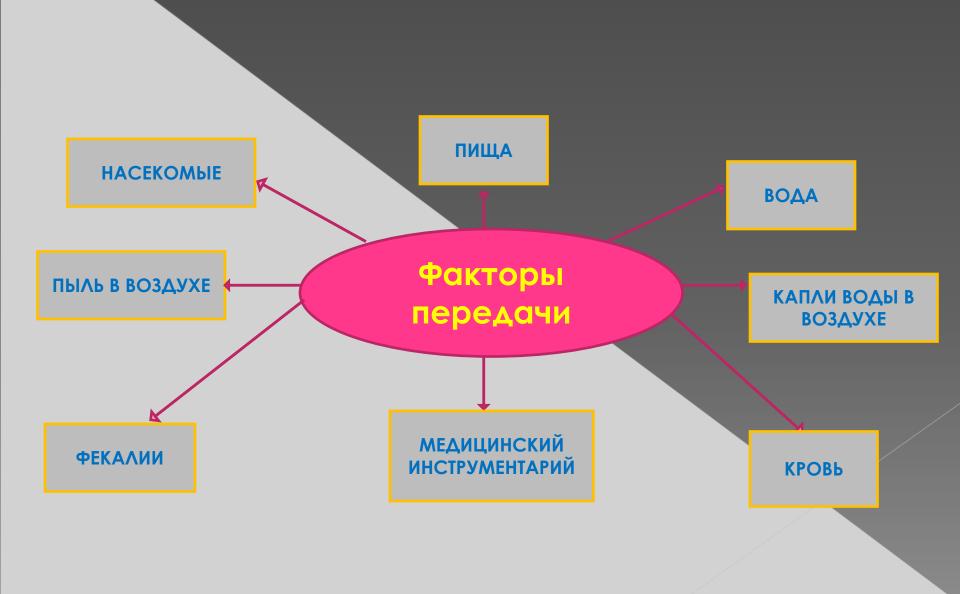

ФОРМЫ ИНФЕКЦИОННЫХ ЗАБОЛЕВАНИЙ



ЭНДОГЕННЫЕ Условно-патогенные микроорганизмы Организм человека в условиях иммунологической недостаточности Хронические и Стресс частые инфекционные и др. заболевания Причины Действие иммунологической недостаточности ионизирующей радиации Голодание Травмы

МИКРОБОНОСИТЕЛЬСТВО И ЛАТЕНТНЫЕ ИНФЕКЦИИ


ОСОБЕННОСТИ ВИРУСНОЙ ИНФЕКЦИИ


МЕХАНИЗМЫ ПЕРЕДАЧИ ИНФЕКЦИИ

МЕХАНИЗМЫ ПЕРЕДАЧИ ИНФЕКЦИИ

ФАКТОРЫ ПЕРЕДАЧИ ИНФЕКЦИИ

Понятие о патогенности микроорганизмов

Патогенность - потенциальная способность микроорганизма индуцировать инфекционный процесс, который характеризуется специфичностью комплекса патоморфологических, патофизиологических и клинических проявлений, вызываемых данным микроорганизмом.

ЭТАПЫ ВЗАИМОДЕЙСТВИЯ ПАТОГЕННЫХ МИКРООРГАНИЗМОВ С МАКРООРГАНИЗМОМ

- 1. АДГЕЗИЯ обусловлена наличием специфичных для рецепторов разных клеток адгезинов (общих пилей).
- 2. КОЛОНИЗАЦИЯ размножение на поверхности тканей.
- 3. ПЕНЕТРАЦИЯ проникновение внутрь клеток хозяина.
- 4.
 4. <a href="https://doi.org/10.1001/journal.com/4.1001/

ВИРУЛЕНТНЫЕ ТОКСИНЫ Связанные со Связанные со Выделяемые Выделяемые структурами структурами микроорганизмами микроорганизмами **микроорганизмов микроорганизмов Липополи** Капсулой Стенкой Белки Белки сахариды А-протеин Гиалуронидаза, Полисахариды стафилококка, Риккетсии нейраминидаза, пневмококков. М-протеины κοαγγλα3α, клебсиелл, стрептококка, фибринолизин, стрептококков корд-фактор ypeasa, M.tuberculosis Эндотоксин лешитиназа. Клостридии, Гр(-) протеаза, возбудитель бактерий **ДНК-аза**, Полипептиды сибирской язвы, декарбоксилаза возбудителя коклюша. дифтерии сибирской язвы

липополисахаридной структуры

Свойства	Природа	
	Белковая	Липополисахаридная
Выделяется из живой клетки	+	-
Токсичность	Высокая	Низкая
Избирательность действия на клетку	Высокоизбирателен	Низкоизбирателен
Отношение к температурному фактору	Термолабилен	Термостабилен
Под действием формальдегида	Обезвреживается	Обезвреживается частично
Антигенность	Высокая	Низкая

^{1.} Белковые (экзотоксины) продуцируют грам(+) и грам(-) бактерии (возбудители: ботулизма, столбняка, дифтерии, коклюша, холеры, сибирской язвы, стафилококки и др.).

2. Липополисахариды (эндотоксины) продуцируют только грам(-) бактерии (возбудители: брюшного

Классификация основных белковых токсинов

Тип	Группа	Продуцирует
Цитотоксины	Антиэлонгаторы Энтеротоксины Дермонекротоксины	C.diphteriae, S.flexneri, S.aureus, Cl.perfringens, S.pyogenes, B.antrhacis
Мембранотоксины	Лейкоцидин Гемолизин	S.aureus, Cl.perfringens, Cl.botulinum, Ps.aerugenosa, Cl.tetani.
Токсины – функциональные блокаторы	Термостабильные энтеротоксины Термолабильные энтеротоксины Токсиноблокаторы нейротоксины	E.coli, S.typhimurium, S.enteritidis, V.cholerae, Y.pestis, B.anthracis, Cl.tetani, Cl.botulinum
Токсины – эксфолианты, эритрогенины	Эксфолиатины Эритрогенины	S.aureus S.pyogenes

Действие основных белковых токсинов

Тип	Свойства	
1. Цитотоксин	Блокирует синтез белка в клетке	
2. Мембранотоксин	Повышает проницаемость мембран эритроцитов, лейкоцитов	
3. Функциональные блокаторы: а) термолабильный и термостабильный энтеротоксины;	а) Активируют клеточную аденилатциклазу, которая повышает проницаемость стенки тонкой кишки;	
б) токсиноблокаторы, нейротоксины, энтеротоксины	б) Инактевируют клеточную аденилатциклазу	
4. Эксфолианты, эритрогенины	Влияют на процессы взаймодействия клеток между собой и с межклеточными веществами	

Действие различных факторов патогенности на организм

ФАКТОРЫ

Факторы микроорганизма, вызывающие первичное разрушение клеток и тканей макроорганизма

Ферменты патогенности: нейраминидаза, гиалуронидаза и др.

Токсические факторы макроорганизма, как результат действия на них микроорганизма

Продукты гидролиза мочевины (под воздействием уреазы)

Продукты распада аминокислот (под воздействием декарбоксилазы) – накопление биогенных аминов

Факторы микроорганизма, противодействую щие иммунитету макроорганизма

А, М-протеины, протеазы

Условия реализации патогенных свойств микроорганизмов

