L ecture 2

Tangent Plane. The Chain Rule.
The Directional derivatives and
the Gradient.



Tangent Planes and Linear Approximations

One of the most important ideas in single-variable calculus is that as we zoom in toward
a point on the graph of a differentiable function, the graph becomes indistinguishable
from its tangent line and we can approximate the function by a linear function. (See Sec-
tion 3.10.) Here we develop similar ideas in three dimensions. As we zoom in toward a
point on a surface that is the graph of a differentiable function of two variables, the sur-
face looks more and more like a plane (its tangent plane) and we can approximate the
function by a linear function of two variables. We also extend the idea of a differential to
functions of two or more variables.

B Tangent Planes

Suppose a surface S has equation z = f(x, y), where f has continuous first partial deriva-
tives, and let P(xo, o, zo) be a point on 8. As in Section 14.3, let (', and (; be the curves
obtained by intersecting the vertical planes y = yo and x = xo with the surface S. Then
the point P lies on both C, and (. Let 1 and 1 be the tangent lines to the curves C; and
(; at the point P. Then the tangent plane to the surface S at the point P is defined to be
the plane that contains both tangent lines 71 and 7>. (See Figure 1.)

We will see in Section 14.6 that if C is any other curve that lies on the surface § and
passes through P, then its tangent line at # also lies in the tangent plane. Therefore you
can think of the tangent plane to S at P as consisting of all possible tangent lines at P to
curves that lie on § and pass through P. The tangent plane at V is the plane that most
closely approximates the surface 5 near the point P.

We know from Equation 12.5.7 that any plane passing through the point P(xo, yo, z0)
has an equation of the form

A(x —x0) + Bly —yw) + C(z — 20) =0



X

FIGURE 1
tangent lines 7 and 7.




By dividing this equation by C and lettinga = —A/C and b = —B/C, we can write it in
the form

1 z — 20 = alx — xo) + b(y — o)

If Equation | represents the tangent plane at P, then its intersection with the plane y = y;
must be the tangent line 7. Setting y = yo in Equation | gives

z —zp=alx — xp) where y =y

and we recognize this as the equation (in point-slope form) of a line with slope a. But
from Section 14.3 we know that the slope of the tangent 1, is fi(xp. yo). Therefore
a = fi(xo, Yo).

Similarly, putting x = xo in Equation 1, we get z — zo = b(y — o), which must rep-
resent the tangent line 15, so b = fi(xg, yo).

2| Equation of a Tangent Plane Suppose f has continuous partial deriva-
tives. An equation of the tangent plane to the surface z = f(x, y) at the point
P(xo, yo, zp) is

z — 2o = filx0, yo)(x — x0) + f3(x0, yo)(¥y — y0)




EXAMPLE 1 Find the tangent plane to the elliptic paraboloid z = 2x* + y? at the
point (1, 1, 3).

SOLUTION Let f(x,y) = 2x* + y%. Then
flx,y) = 4x Hxy) =2y
fi(1,1) =4 AH(1,1)=2
Then (2) gives the equation of the tangent plane at (1, 1, 3) as
z—3=4x-1+2y—-1)
or z=4x+ 2y —3 14
Figure 2(a) shows the elliptic paraboloid and its tangent plane at (1, 1, 3) that we found

in Example 1. In parts (b) and (c) we zoom in toward the point (1, 1, 3). Notice that the
more we zoom in, the flatter the graph appears and the more it resembles its tangent plane.

(a) (b) (c)

FIGURE 2 The elliptic paraboloid z = 2x* + y? appears to coincide with its tangent plane as we zoom in toward (1, 1, 3).



The Chain Rule

Recall that the Chain Rule for functions of a single variable gives the rule for differenti-
ating a composite function: if y = f(x) and x = g(t), where f and g are differentiable
functions, then y is indirectly a differentiable function of ¢ and

dy _ dy dx
dt dx dt

In this section we extend the Chain Rule to functions of more than one variable.

B The Chailn Rule: Case 1

For functions of more than one variable, the Chain Rule has several versions, each of
them giving a rule for differentiating a composite function. The first version (Theorem 1)
deals with the case where z = f(x, y) and each of the variables x and y is, in turn, a func-
tion of a variable t. This means that z is indirectly a function of ¢, z = f(g(r), h(t)), and
the Chain Rule gives a formula for differentiating z as a function of t. We assume that f
is differentiable (Definition 14.4.7). Recall that this is the case when f; and f; are con-
tinuous (Theorem 14.4.8).

[1] The Chain Rule (Case 1) Suppose that z = f(x, y) is a differentiable function
of x and y, where x = g(f) and y = k() are both differentiable functions of t. Then
z i1s a differentiable function of ¢ and

dz_afdr+6fd)'

dt ox dt dy dt




PROOF A change of At in t produces changes of Ax in x and Ay in y. These, in turn,
produce a change of Az in z, and from Definition 14.4.7 we have

Az=a—fA +—fA\ + g1 Ax + &2 Ay

ox ay
where g1 — 0 and &2 — 0 as (Ax. Ay) — (0, 0). [If the functions &) and &2 are not
defined at (0, 0), we can define them to be 0 there.] Dividing both sides of this equation
by At, we have

Az  of Ax  of Ay Ax Ay

+e1—+ e2——

Af - ax Af © 9y Af AZ TR

If we now let At — 0, then Ax = g(t + Ar) — g(tr) — 0 because g is differentiable and
therefore continuous. Similarly, Ay — 0. This, in tumn, means that &, — 0 and &, — 0, so

dz g Az
— =11 e
dt Ar—0At
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EXAMPLE 1 If z = x*y + 3xy*, where x = sin 2f and y = cos 1, find dz/dt when
t=0.

SOLUTION The Chain Rule gives

= (2xy + 3y*)(2 cos 28) + (x* + 12xy*)(—sin 1)

It’s not necessary to substitute the expressions for x and y in terms of t. We simply
observe that when r = 0, we have x = sin 0 = 0 and y = cos 0 = 1. Therefore

=0+ 3)(2cos0) + (0 + 0)(—sin0) =6




B The Chain Rule: Case 2

We now consider the situation where z = f(x, y) but each of x and y is a function of two
variables s and t: x = g(s, 1), y = h(s, t). Then z is indirectly a function of s and f and we
wish to find 3z/ds and dz/at. Recall that in computing dz/at we hold s fixed and compute
the ordinary derivative of z with respect to t. Therefore we can apply Theorem 1 to obtain

0z _ 0z ox 4 0z ay
gt  ox ot ay ot

A similar argument holds for dz/ds and so we have proved the following version of the
Chain Rule.

@ The Chain Rule (Case 2) Suppose that z = f(x, y) is a differentiable function
of x and y, where x = g(s, 1) and y = h(s, ) are differentiable functions of s and .
Then

0z 0z dx 0z dy dz 0z ox 4 0z dy
ds  0x 0s ay as ot dx ot ay ot




EXAMPLE 3 Ifz = e*sin y, where x = st and y = s, find 9z/ds and dz/0t.
SOLUTION Applying Case 2 of the Chain Rule, we get

_gé - %g—j s -ai% = (e*siny)(r*) + (e* cos y)(2s1)

= (e*sin y)(2st) + (e*cos y)(s?)

If we wish, we can now express dz/ds and 9z/at solely in terms of s and ¢ by substitut-
ing x = st%, y = 5%, to get
az

e t2e™ sin(s) + 2ste™ cos(s%)

% = 2ste™ sin(s%) + 5% cos(s%)




B The Chain Rule: General Version

Now we consider the general situation in which a dependent variable « is a function of
n intermediate variables x,, ..., x,, each of which is, in turn, a function of m indepen-
dent variables 1y, . . ., 5. Notice that there are n terms, one for each intermediate variable.

The proof is similar to that of Case 1.

@ The Chain Rule (General Version) Suppose that u is a differentiable func-
tion of the n vanables xi, x2, .. .. xs and each x; is a differentiable function of the
m variables t;, f>. . ... ty. Then u 1s a function of £, t5, . . ., 1, and

au ou  ox; du dx; " ou ox,

ot ox1 ot ox2 ot Oxn Ot

foreachi=1,2,...,m.




EXAMPLE 4 Write out the Chain Rule for the case where w = f(x, y, z, f) and

= x(u, v), y = y(u, v), z = z(u, v), and t = H{u, v).

SOLUTION We apply Theorem 3 with n = 4 and m = 2. Figure 3 shows the tree
diagram. Although we haven’t written the derivatives on the branches, it’s understood
that if a branch leads from y to u, then the partial derivative for that branch is dy/du.
With the aid of the tree diagram, we can now write the required expressions:

ow Jw ox ow dy ow 9z ow ot
- - -

ou 0x ou ay ou 0z du at du

ow Jw ox dw dy ow 0z Jw ot
= + - — + =
dv ox ov dy dv dz dv ot dv

EXAMPLE 5 Ifu = x*y + y*z°, where x = rse', y = rs’e ™', and z = r’ssin ¢, find the

value of du/dswhenr =2,5s = 1,t = 0.
SOLUTION With the help of the tree diagram in Figure 4, we have

ou  du ox Y ou ay 7 ou 9z
as 0x ds dy as dz ds

= (@x’y)(re') + (x* + 2yz2*)(2rse™") + (By*z?)(r’sin )

Whenr=2,s=1,andt=0,wehavex =2, y=2,andz = 0, so

%‘— = (64)(2) + (16)@) + (0)(0) = 192



B Implicit Differentlation

The Chain Rule can be used to give a more complete description of the process of implicit
differentiation that was introduced in Sections 3.5 and 14.3. We suppose that an equa-
tion of the form F(x, y) = 0 defines y implicitly as a differentiable function of x, that is,
y = f(x), where F(x, f(x)) = 0 for all x in the domain of f. If F is differentiable, we can
apply Case 1 of the Chain Rule to differentiate both sides of the equation F(x,y) =0
with respect to x. Since both x and y are functions of x, we obtain

oF dx  oF dy
+ =0
ox dx dy dx

But dx/dx = 1, so if 3F/ay # 0 we solve for dy/dx and obtain

K

dy ax _ F

5] dx  aF F
ay

To derive this equation we assumed that F(x, y) = 0 defines y implicitly as a function
of x. The Implicit Function Theorem, proved in advanced calculus, gives conditions
under which this assumption is valid: it states that if F' is defined on a disk containing
(a, b), where F(a, b) = 0, Fy(a, b) # 0, and F; and F, are continuous on the disk, then
the equation F(x, y) = 0 defines y as a function of x near the point (a, b) and the deriva-
tive of this function is given by Equation 5.



EXAMPLE 8 Find y' if x* + y* = 6xy.
SOLUTION The given equation can be written as

Fx,y)=x’+y’—6xy=0

_ _I'-6 _ x-2
T 3y —6x | yr—2x




Now we suppose that z is given implicitly as a function z = f(x, y) by an equation of
the form F(x, y, z) = 0. This means that F(x, y, f(x, ¥)) = 0 for all (x, y) in the domain
of f.If ¥ and f are differentiable, then we can use the Chain Rule to differentiate the
equation F(x, y, z) = 0 as follows:

o ox oK dy | oK o

ax 9x  dy ax 9z ax

d d
But 5% (=1 and o (y)=0

so this equation becomes




If aF/dz # 0, we solve for dz/dx and obtain the first formula in Equations 6. The for-

mula for dz/dy is obtained in a similar manner.

0z
6 = -
ox

aF

x _ F
“oF F.

0z

aF
oz _ _ay _ K
ay - _G_F - _F:
0z

Again, a version of the Implicit Function Theorem stipulates conditions under which
our assumption is valid: if F is defined within a sphere containing (a, b, c), where
Fla,b,c) = 0, F(a, b, c) # 0, and F;, Fy, and F, are continuous inside the sphere, then
the equation F(x, y, z) = 0 defines z as a function of x and y near the point (a, b, ¢) and
this function is differentiable, with partial derivatives given by (6).



Directional Derivatives and the Gradient Vector

The weather map in Figure 1 shows a contour map of the temperature function 7T(x, y)
for the states of California and Nevada at 3:00 pM on a day in October. The level curves,
or isothermals, join locations with the same temperature. The partial derivative 7; at a
location such as Reno is the rate of change of temperature with respect to distance if we
travel east from Reno; 7 is the rate of change of temperature if we travel north. But what
if we want to know the rate of change of temperature when we travel southeast (toward
Las Vegas), or in some other direction? In this section we introduce a type of derivative,
called a directional derivative, that enables us to find the rate of change of a function of
two or more variables in any direction.

L 'y L 4 J
0 S0 100 150 200
(Distance in miles)



B Directional Derivatives
Recall that if z = f(x, y), then the partial derivatives f; and f; are defined as

filxo, y0) = HM%M

(]

. f(xo,y0 + h) — f(x0, yo)

f(x0,y0) = lim p

and represent the rates of change of z in the x- and y-directions, that is, in the directions
of the unit vectors i and j.




Suppose that we now wish to find the rate of change of z at (xo, yo) in the direction of
an arbitrary unit vector u = {a, b). (See Figure 2.) To do this we consider the surface S
with the equation z = f(x, y) (the graph of f) and we let z; = f(xg, yo). Then the point
P(x0, yo, z0) lies on S. The vertical plane that passes through P in the direction of u inter-
sects S in a curve C. (See Figure 3.) The slope of the tangent line 1 to C at the point P is
the rate of change of z in the direction of u.




If Q(x,y, z) is another point on C and P', Q' are the projections of ¥, Q onto the
xy-plane, then the vector P'Q’ is parallel to u and so

—_
P'Q" = hu = (ha, hb)

for some scalar h. Therefore x — xo = ha,y — yo = hb, so x = xo + ha, y = yo + hb,
and

Az  z—2z0  f(xo+ ha,yo + hb) — f(xo, yo)

h  h h

If we take the limit as h — 0, we obtain the rate of change of z (with respect to distance)
in the direction of u, which is called the directional derivative of f in the direction of u.

2| Definition The directional derivative of f at (xg, yp) in the direction of a
unit vector u = {(a, b) is

f(xo + ha, yo + hb) — f(xo, yo)
h

an(-fo, )’o) — '!l_[%

if this limit exists.

By comparing Definition 2 with Equations 1, we see that if u =i = (1,0), then
Dif = fiand ifu = j = (0, 1), then D; f = f,. In other words, the partial derivatives of f
with respect to x and y are just special cases of the directional derivative.



When we compute the directional derivative of a function defined by a formula, we
generally use the following theorem.

3| Theorem If f is a differentiable function of x and y, then f has a directional
derivative in the direction of any unit vector u = {a, b) and

Dy f(x,y) = filx,y)a + fy(x, y) b

PROOF If we define a function g of the single variable i by

g(h) = f(xo + ha, yo + hb)
then, by the definition of a derivative, we have

iy 90 = 6@ _ . f(xo + ha,yo + hb) — f(xo, yo)
h—0 h h—0 h

4] 40 =

= Dy f(x0, Y0)




On the other hand, we can write g(h) = f(x, y), where x = xo + ha,y = yo + hb, so
Case 1 of the Chain Rule (Theorem 14.5.1) gives

g =G+ L~ i y)a+ 5 b

If we now put h = 0, then x = xy, y = yp, and
5 g'(0) = filxo, yo) @ + fy(x0, yo) b
Comparing Equations 4 and 5, we see that

Dy f(x0, yo) = fi(xo, yo)a + fy(x0, yo) b o4

If the unit vector u makes an angle 6 with the positive x-axis (as in Figure 5), then we
can write u = (cos @, sinf) and the formula in Theorem 3 becomes

6 Duf(x,y) = fi(x,y) cosf + fy(x,y) sinf




EXAMPLE 2 Find the directional derivative D, f(x, y) if
f(xy) = x> — 3xy + 4y

and u is the unit vector in the direction given by angle # = /6, measured from the
positive x-axis. What is Dy f(1, 2)?

SOLUTION Formula 6 gives

Dy f(x,y) = filx, y)oos% +fy(x’ y) sin%

= (32 — 3y)§ R 8y)%

= %[3,/51,2 - 3x+(8 - 3J§)y]
Therefore

D11, = H3V30F - 31) + (8 - 3V3)2)] = = V3




B The Gradlent Vector

Notice from Theorem 3 that the directional derivative of a differentiable function can be
written as the dot product of two vectors:

[7] Duf(x,y) = filx.¥)a + f(x, )b
= (filx,3). 5(x,y)) - (a. b)
= (%), f(x,5)) - u
The first vector in this dot product occurs not only in computing directional derivatives

but in many other contexts as well. So we give it a special name (the gradient of f) and
a special notation (grad f or Vf, which is read “del ™).

8| Definition If f is a function of two variables x and y, then the gradient of f
is the vector function Vf defined by

Of
ay

Vi(x, y) = (filx, ), i(x,y)) = —n o




EXAMPLE 3 If f(x,y) = sinx + ™, then
Vf(x,y) = (i, ) = {cos x + ye™, xe™)
and V£(0,1) =(2,0) .

With this notation for the gradient vector, we can rewrite Equation 7 for the direc-
tional derivative of a differentiable function as

[9] Dyf(x,y) = Vf(x,y) - u

This expresses the directional derivative in the direction of a unit vector u as the scalar
projection of the gradient vector onto u.




