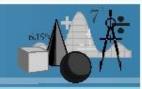
Тригонометрические уравнения, сводящиеся к квадратным

Основные методы решения тригонометрических уравнений



Решите уравнение:

$$6sin^2x - 5sinx - 4 = 0$$
 введем новую переменную $sinx = t$.

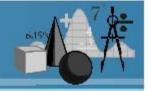
Тогда уравнение примет вид

$$6t^2-5t-4=0$$
 $t_1=rac{4}{3}$ $t_2=-rac{1}{2}$ $\sin x=rac{4}{3}$ $\sin x=-rac{1}{2}$ корней нет $x=(-1)^{n+1}rac{\pi}{6}+\pi n, n\in Z$

Решим уравнения:

$$4\cos^2 x - 8\sin x + 1 = 0$$

$$7sin^2x + 4sinxcosx - 3cos^2x = 0$$

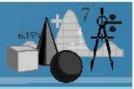


1.
$$x = (-1)^k \frac{\pi}{6} + \pi k, k \in \mathbb{Z}.$$

$$2. \quad x = -\frac{\pi}{4} + \pi n, n \in \mathbb{Z}.$$

$$x = arctg + \pi n, n \in \mathbb{Z}.$$

Решите используя основные методы решения тригонометрических уравнений



I вариант

$$a)6sin^2x + 7cosx - 7 = 2$$

$$\text{6})\cos 2x + \sqrt{2}\sin\left(\frac{\pi}{2} + x\right) + 1 = 0$$

$$B)\cos 2x + \sin^2 x = 0.25$$

II вариант

a)
$$7\sin^2 x + 8\cos x - 8 = 0$$

$$6)2\sin^2 x - \sqrt{3}\cos\left(\frac{\pi}{2} - x\right) = 0$$

$$B)\sin 2x + \sqrt{3}\sin x = 0$$

Тригонометрические уравнения:

- 1 вид: 1) $\cos^2 x + 4\cos x + 3 = 0$, 4) $-\sin^2 x + 2\sin x 1 = 0$,

 - 5) $tg^2x + tg x 2 = 0$.

2 вид: 3) $\cos^2 x + 2\sin x - 2 = 0$.

3 вид: 2) $3\sin^2 x + \sin x \cdot \cos x = 2 \cdot \cos^2 x$.

Однородные уравнения

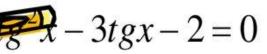
$$6\sin^2 x - 3\sin x \cos x - \cos^2 x = 1$$
$$\cos^2 x + \sin^2 = 1$$

$$6\sin^2 x - 3\sin x \cos x - \cos^2 x = \cos^2 x + \sin^2 x$$

$$6\sin^2 x - 3\sin x \cos x - \cos^2 x - \cos^2 x - \sin^2 x = 0$$

$$5\sin^2 x - 3\sin x \cos x - 2\cos^2 x = 0\cos^2 x$$

$$\frac{5\sin^2 x}{\cos^2 x} - \frac{3\sin x + \cos x}{\cos^2 x} - \frac{2\cos^2 x}{\cos^2 x} = 0$$



Задача 1

Решите уравнение $2 \sin^2 x - 7 \sin x + 3 = 0$.

Решение

 \mathbf{P} Пусть $\sin x = t$, тогда получаем: $2t^2 - 7t + 3 = 0$.

Отсюда
$$t_1 = 3$$
; $t_2 = \frac{1}{2}$.

- 1. При t = 3 имеем $\sin x = 3$ уравнение не имеет корней, поскольку |3| > 1.
- 2. При $t=\frac{1}{2}$ имеем $\sin x=\frac{1}{2},$ тогда $x=(-1)^n \arcsin \frac{1}{2} + \pi n,$ $x=(-1)^n \frac{\pi}{6} + \pi n, \ n \in \mathbf{Z}.$

Omsem: $(-1)^n \frac{\pi}{6} + \pi n, n \in \mathbb{Z}$.

Комментарий

Анализируя вид этого уравнения, замечаем, что в его запись входит только одна тригонометрическая функция $\sin x$. Поэтому удобно ввести новую переменную $\sin x = t$.

После решения квадратного уравнения необходимо выполнить обратную замену и решить полученные простейшие тригонометрические уравнения.

Замечание. Записывая решения задачи 1, можно при введении замены $\sin x = t$ учесть, что $|\sin x| \le 1$, и записать ограничения $|t| \le 1$, а далее заметить, что один из корней t=3 не удовлетворяет условию $|t| \le 1$, и после этого обратную замену выполнять только для $t=\frac{1}{2}$.

Nº1

a)
$$2\sin^2 x - \sin x - 1 = 0$$

6)
$$2\cos^2 x - \cos x - 1 = 0$$

$$B) 2sin^2x + sinx - 1 = 0$$

$$\int 2\cos^2 x + \sin x - 1 = 0$$