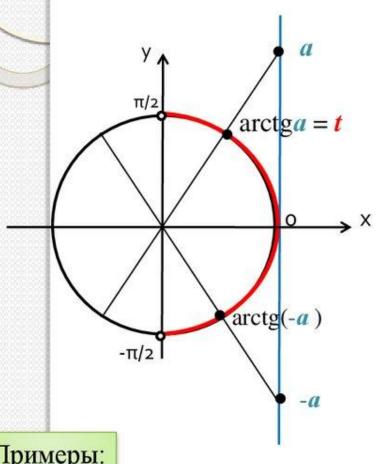

Арккосинус

Арккосинусом числа a называется такое число (угол) t из $[0;\pi]$, что $\cos t = a$. Причём, $|a| \le 1$.

 $\arccos(-a) = \pi - \arccos a$

Арксинус

Арксинусом числа a называется такое число (угол) t из $[-\pi/2;\pi/2]$, что $sin\ t = a$. Причём, $|a| \le 1$.


 $\arcsin(-a) = -\arcsin a$

1)
$$\arcsin \frac{1}{2} = \frac{\pi}{6}$$

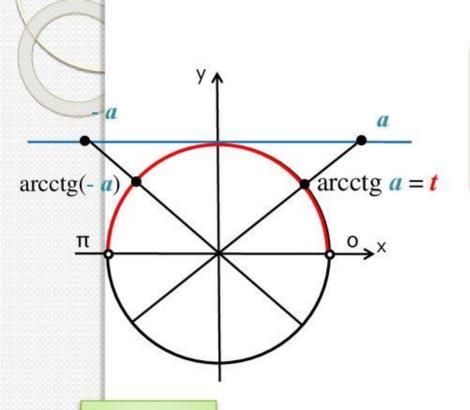
$$2)\arcsin\left(-\frac{\sqrt{2}}{2}\right) = -\frac{\pi}{4}$$

$$3)arcsin0 = 0$$

Арктангенс

Арктангенсом числа а называется такое число (угол) t из $(-\pi/2;\pi/2)$, что tgt=a. Причём, а Є R.

arctg(-a) = - arctg a


Примеры:

1) $arctg\sqrt{3/3} =$ $\pi/6$

 $2) \operatorname{arctg}(-1) =$

 $-\pi/4$

Арккотангенс

Арккотангенсом числа a называется такое число (угол) t из $(0;\pi)$, что $ctg\ t = a$. Причём, a ER.

 $arcctg(-a) = \pi - arcctg a$

 $\pi/6$

Примеры:

1)
$$\operatorname{arcctg}(-1) =$$

$$3\pi/4$$

2)
$$arcctg\sqrt{3} =$$

Объединим определения в таблицу

Обратная	Определение
тригонометрическая	
функция	
Арккосинус	
Арксинус	
Арктангенс	
Арккотангенс	

Объединим свойства в таблицу

 $\arcsin(-a) = -\arcsin a$

arctg(-a) = - arctg a

Значения обратных тригонометрических функций можно определять по выделенной части таблицы. В своих таблицах тоже выделите данную область.

Функция	Аргумент																
	0.	30	45	60	90	120"	135	150	180	210	225	240	270	300	315	330	36
	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	# <u>3</u>	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	5.x 6	π	$\frac{7\pi}{6}$	<u>5π</u> 4	$\frac{4\pi}{3}$	3± 2	$\frac{5\pi}{3}$	$\frac{7\pi}{4}$	11π 6	24
008.8	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	- 1/2	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1	$-\frac{\sqrt{3}}{2}$	- √2/2	- 1/2	0	1/2	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
sin <i>t</i>	0	1/2	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	1/2	0	- 1/2	- √2/2	$-\frac{\sqrt{3}}{2}$	-1	- \frac{\sqrt{3}}{2	$-\frac{\sqrt{2}}{2}$	- 1/2	0
tg t	0	$\frac{\sqrt{3}}{3}$	1	√3		- √3	-1	- √3/3	0	$\frac{\sqrt{3}}{3}$	1	√3		- √3	-1	- √3 3	0
cgt t		√3	1	$\frac{\sqrt{3}}{3}$	0	- √3/3	-1	- √3	-	√3	1	<u>√3</u> 3	0	$-\frac{\sqrt{3}}{3}$	-1	- √3	

Примеры.

1)
$$\arccos \frac{1}{2} = \frac{\pi}{3}$$
,

$$2) \arcsin \frac{\sqrt{2}}{2} = \frac{\pi}{4},$$

3)
$$arctg1 = \frac{\pi}{4}$$
,

4)
$$arcctg1 = \frac{\pi}{4}$$
,

напр
$$(-)$$
 отив ctg ,

 $\left(-\frac{1}{2}\right)$ напротив cos,

7)
$$\arcsin\left(-\frac{\sqrt{2}}{2}\right) = -$$
 восхіто $\frac{\sqrt{2}}{2}$ ванись формулой $\sin()$ \sin , $-t = t$

Вфанка (orla) инена формуной, ()
$$arctg - t = -arctgt$$

