
Углерод и его соединения

Характерные степени окисления углерода:

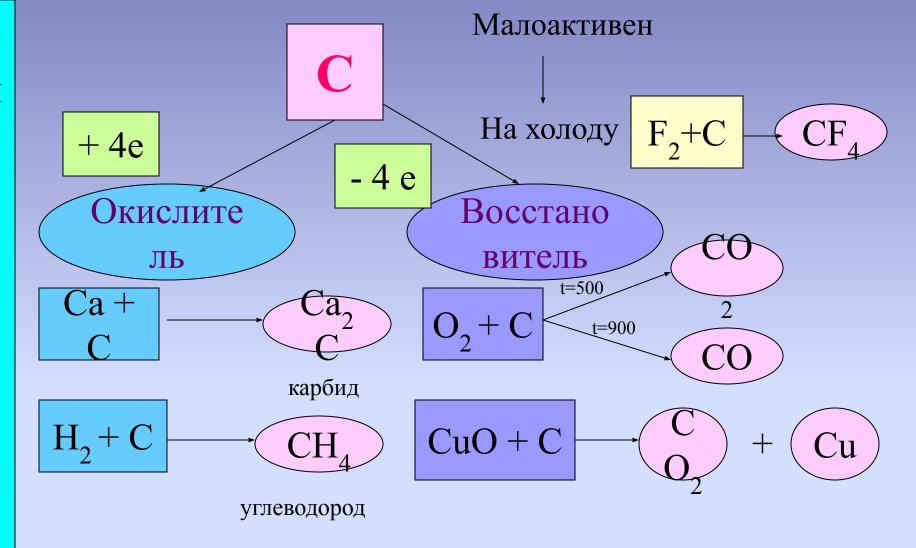
Простое вещество С – окислитель или восстановитель?

Причина: разное строение кристаллической решетки.

При сгорании – углекислый газ

- Бесцветный
- Прозрачный
- Не проводит эл. ток
- Прочный
- Твердый

Я


Графит

- •Темно-серый
- •Непрозрачный
- •Проводит эл. ток
- •Мало прочный
- •Мягкий
- •Металлический блеск
- •Оставляет след на бумаге
- •Жирный на ощупь

При сгорании – углекислый газ

Карбин

Карбин представляет собой порошок глубокого чёрного цвета с вкраплением более крупных частиц.По электрической проводимости карбин занимает промежуточное положение между алмазом и графитом.

Восстановление меди из ее оксида углем.

Химические свойства углерода

<u>С простыми</u> веществами:

1. С неметаллами: Si + C⁰ =SiC⁻⁴ C⁰+O₂=C⁺⁴O₂

2. С металлами: 4AL + $3C^0 = AL_4C_3^{-4}$

Со сложными веществами:

1. Восстанавливает металлы из их оксидов СаО+ 3С°=СаС2+С+2О
2. Реагирует с концентрированными кислотами С°+2H,SO4=2SO4+C+4O4+2H,O

В реакциях углерод проявляет, и окислительные, и восстановительные свойства

Адсорбция

- свойство углерода удерживать на пористой поверхности растворенные вещества и газы

Н. Д. Зелинский

На основе адсорбционных свойств угля

разработал

Углерод

медицина

топливо

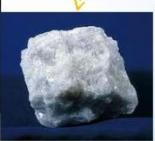
резина

Соединения углерода

Оксиды углерода

Угольная кислота

Карбонаты

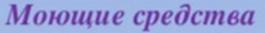

Гидрокарбонаты

Оксид углерода (II)

Оксид углерода (IV)

Аргонит (жемчуг)

Мрамор


Известняк

Углекислотный огнетушитель

Соединения углерода вокруг нас

Сухой лед (хладагент)

Сода

ОКСИД УГЛЕРОДА (II)

Несолеобразующий оксид

CO

Оксид углерода (II) Угарный газ Монооксид углерода

Без цвета

Без запаха

Чуть легче воздуха

Плохо р-м в воде Хороший восстановитель (T.K. CO = +2)

$$2 \overset{+2}{\text{CO}}_{-2e} \overset{\circ}{\text{O}}_{2} = 2 \overset{+4}{\text{CO}}_{2}$$

$$F_{-6e}^{+3}$$
 + 3 C_{-6e}^{+2} = 2 F_{e}^{+3} + 3 C_{-6e}^{+4}

Химические свойства ${ m CO}_2$ -(кислотный оксид)

1. Pearupyem с водой
$$CO_2 + H_2O = H_2CO_3$$
2. Pearupyem с основными оксидами $CO_2 + CaO = CaCO_3$
3. Pearupyem с щелочами $CO_2 + 2KOH = K_2CO_3 + H_2O$
4. Pearupyem с углеродом $CO_2 + C = 2CO$

- Угольная кислота химическая формула H₂CO₃
- Структурная формула все связи ковалентные полярные

- Кислота слабая, существует только в водном растворе, очень непрочная, разлагается на углекислый газ и воду:
- $CO_2 + H_2O \leftrightarrow H_2CO_3$
- В ионных уравнениях записываем
- $H_{2}CO_{3} \leftrightarrow H_{2}O + CO_{3}$

Угольная кислота

• Двухосновная, образует соли:

- -средние карбонаты (ионы CO_3^{2-})
- - кислые гидрокарбонаты (ионы HCO_3^-)

Качественная реакция

Качественная реакция

на СО₃²⁻ карбонат – ион "вскипание" при действии сильной кислоты:

$$Na_2CO_3 + 2HCl = 2NaCl + H_2O + CO_2\uparrow$$