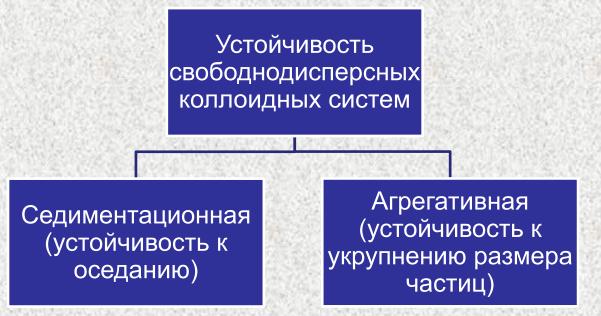
Коллоидная химия

ФФХИ, 2019 г., 1 семестр


Лекция 12. Лиофильные и лиофобные дисперсные системы. Свойства лиофильных систем. Коллоидные растворы ПАВ. Мицеллообразование. Термодинамика мицеллообразования. Микроэмульсии.

Устойчивость коллоидных систем

Устойчивость коллоидных систем – постоянство их свойств во времени:

- ✓ Дисперсности;
- ✓ Распределения по объему частиц дисперсной фазы;
- Межчастичного взаимодействия.

Проблема устойчивости характерна для свободнодисперсных систем

Седиментационная устойчивость – устойчивость системы против снижения потенциальной энергии частиц дисперсной фазы при их оседании под действием силы тяжести (центробежной силы).

Агрегативная устойчивость – устойчивость системы против процессов, ведущих к уменьшению свободной поверхностной энергии

Устойчивость коллоидных систем

Классификация на лиофильные и лиофобные системы - термодинамическая **Лиофильные коллоидные системы** — получаются самопроизвольно (самопроизвольное диспергирование), агрегативно термодинамически устойчивы.

Лиофобные коллоидные системы – образуются при принудительном диспергировании.

Лиофобные системы имеют избыток свободной энергии, → самопроизвольно идут процессы укрупнения частиц, → агрегативно неустойчивы.

Агрегативная устойчивость лиофобных систем имеет кинетический характер и определяется временем их жизни до коагуляции.

Лиофильные коллоидные системы

Лиофильные коллоидные системы:

- 1) Растворы ПАВ;
- 2) Микроэмульсии;
- 3) Растворы ВМС (???).

Термодинамика лиофильных систем

Образование лиофильных систем: $\Delta G = \Delta H + \sigma S_{\text{пов}} - T \Delta S$. Для самопроизвольного процесса: $\Delta G < 0$. Вкладом ΔH пренебрегаем, оценим влияние только энтропийного фактора.

ΔS может быть только для систем, способных участвовать в тепловом (броуновском) движении. Т.о., лиофильными могут быть только ультрамикрогетерогенные свободнодисперсные системы.

Пусть в результате самопроизвольного диспергирования образовалось N_1 моль частиц дисперсной фазы радиусом r; кроме того, есть N_2 моль растворителя (дисперсионной среды).

Тогда вклад поверхностного натяжения: $\sigma S_{\text{пов}} = N_1 N_A 4 \pi r^2 \sigma$ Вклад энтропийного фактора: $T \Delta S$

Прирост энтропии при смешении (появлении в системе N_1 моль частиц дисперсной фазы):

$$\Delta S = R\left(N_1 \ln \frac{N_1 + N_2}{N_1} + N_2 \ln \frac{N_1 + N_2}{N_2}\right) = kN_A \left(N_1 \ln \frac{N_1 + N_2}{N_1} + N_2 \ln \frac{N_1 + N_2}{N_2}\right)$$

$$\Delta S = kN_A \left(N_1 \ln \left(1 + \frac{N_2}{N_1}\right) + N_2 \ln \left(1 + \frac{N_1}{N_2}\right)\right)$$

$$\frac{N_1}{N_2}$$
 очень мало: при 0,1% об. частиц с $r = 10^{-8}$ м , $\frac{N_1}{N_2} \sim 10^{-8}$, $\ln \left(1 + \frac{N_1}{N_2}\right) \approx \frac{N_1}{N_2}$. Тогда:
$$\Delta S = kN_A \left(N_1 \ln \frac{N_2}{N_1} + N_1\right) = kN_A N_1 \left(\ln \frac{N_2}{N_1} + 1\right) = kN_A N_1 \beta$$

Термодинамика лиофильных систем

Вклад поверхностного натяжения: $\sigma S_{\text{пов}} = N_1 N_A 4\pi r^2 \sigma$ Вклад энтропийного фактора: $T\Delta S = kN_AN_1\beta T$

$$\Delta G = \sigma S_{\text{\tiny HOB}} - T \Delta S = N_1 N_A 4 \pi r^2 \sigma - k N_A N_1 \beta T$$

$$\Delta G = N_1 N_A (4\pi r^2 \sigma - \beta kT)$$

Если частицы – несферической формы, то

$$\Delta G = N_1 N_A (\alpha a^2 \sigma - \beta kT) (\alpha$$
 – коэффициент формы, α – характерный размер частицы)

Условие самопроизвольного диспергирования: $\Delta G < 0$ $\alpha a^2 \sigma_{\text{KPUT}} < \beta kT$

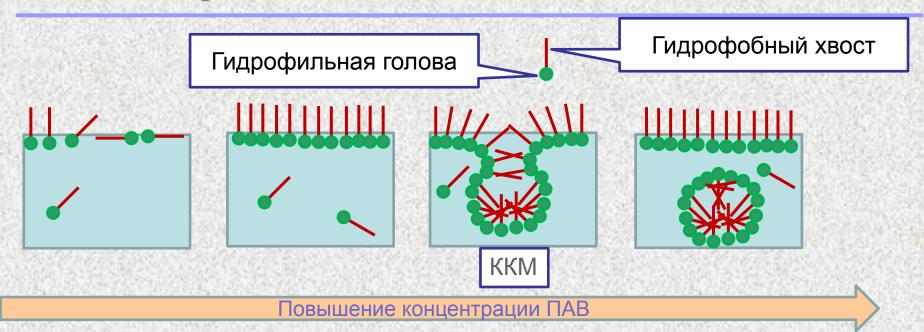
$$\sigma_{ ext{крит}} < \frac{\beta kT}{\alpha a^2}$$

$\sigma_{\text{крит}} < \frac{\beta kT}{\alpha a^2}$ - условие самопроизвольного диспергирования

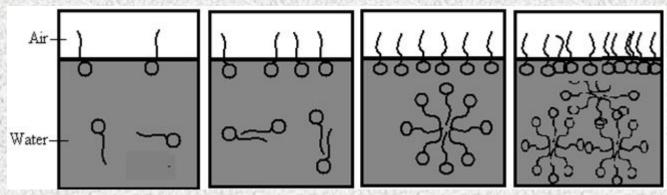
Если межфазное натяжение достаточно мало, то возможно самопроизвольное отщепление частиц коллоидных размеров от макрофазы. При этом работа, затрачиваемая на формирование новой поверхности, компенсируется выигрышем энергии в результате прироста энтропии из-за участия образующихся частиц в тепловом движении.

Коллоидные растворы ПАВ

Поверхностно-активные вещества (ПАВ) – вещества, снижающие поверхностное натяжение при добавлении.



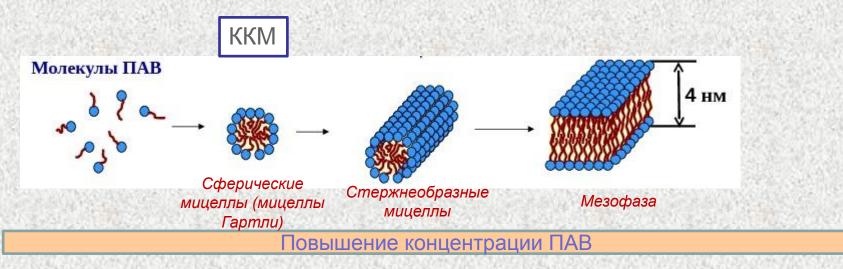
Истинно растворимые ПАВ – низшая органика Коллоидные ПАВ обладают высокой поверхностной активностью, способны к


солюбилизации, образуют мицеллы при концентрации свыше определенной (т.н.

критическая концентрация мицеллообразования, ККМ).

Коллоидные растворы ПАВ образуются при небольшой растворимости ПАВ. Мицелла – ассоциат дифильных молекул, лиофильные группы которых обращены к растворителю, а лиофобные соединяется друг с другом, образуя ядро мицеллы.

Аналогично происходит процесс и в объеме:



При повышении концентрации ПАВ выше ККМ происходит увеличение числа мицелл, но не их размеров.

Число агрегации – число молекул ПАВ в мицелле

Эволюция мицелл ПАВ

Возможности повышения числа мицелл ограничены, поэтому при дальнейшем росте концентрации ПАВ происходит переход их в другие формы. ККМ₂ – концентрация, при которой происходит перекрывание ДЭС мицелл при сохранении их сферической формы

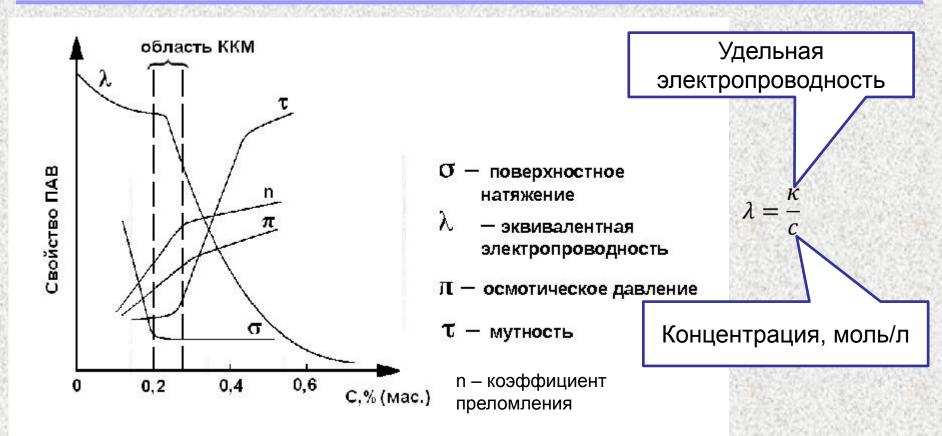
Мицеллы – ограниченные структуры (число агрегации - конечно). При дальнейшем росте концентрации ПАВ происходит их переход в бесконечные структуры – мезофазу (жидкокристаллические и подобные структуры), агрегация проходит во всем объеме сосуда (число агрегации - бесконечно).

Мицеллобразование в неводных средах

В неполярных средах ПАВ не понижают поверхностное натяжение, но мицеллообразование все же идет. При этом образуются т.н. обратные мицеллы (обращенные полярными концами внутрь).

Движущая сила – замена взаимодействия «полярная группа – неполярная жидкость» на «полярная группа – полярная группа»

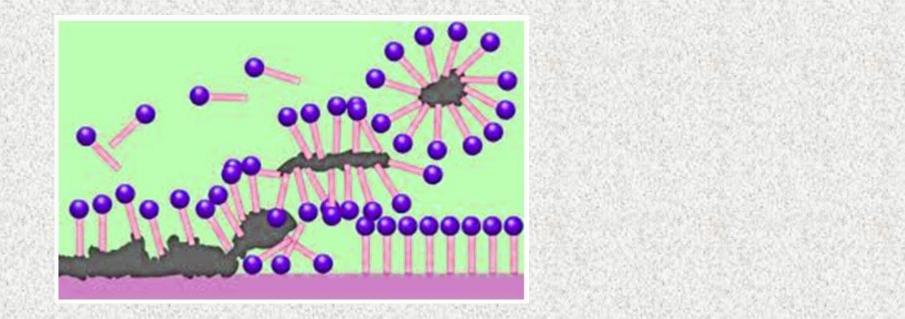
Особенности обратных мицелл:


- 1) Число агрегации намного меньше, чем для прямых мицелл;
- 2) Ионогенные ПАВ в обратных мицеллах практически не диссоциированы;
- 3) Образование мицелл стимулируется следовыми количествами воды.

Фазовая диаграмма системы неионогенный коллоидный ПАВ - вода

Точка Крафта – температура, при которой резко увеличивается растворимость ПАВ вследствие образования мицелл. При температуре ниже точки Крафта растворимость ПАВ ниже ККМ.

Методы определения ККМ



- 1) По поверхностному натяжению;
- 2) По электропроводности;
- 3) По мутности;
- 4) По коэффициенту преломления;
- Ε) Πο οργοτισμούνουν πορπουμαίο

Солюбилизация

Солюбилизация — процесс включения в состав мицелл третьего компонента, нерастворимого или малорастворимого в дисперсионной среде и перевод его таким образом в раствор (не в истинный!).

Солюбилизация – основа моющего действия ПАВ.

Термодинамика мицеллообразования

 $\Delta G = \Delta H - T \Delta S$

Параметр	В полярных средах («вода»)	В неполярных средах («масло»)	
			A APPEAR

Термодинамика мицеллообразования

Рассматриваем образование мицеллы как квазихимическую реакцию $m(\Pi AB) \rightleftharpoons \Pi AB_m$ (для неионогенных)

$$pD^+ + nR^- \rightleftarrows M^{(n-p)-}$$
 (для ионогенных)

Пример:

$$p\text{Na}^+ + n\text{C}_{17}\text{H}_{33}\text{COO}^- \rightleftharpoons \text{Na}_p^+(\text{C}_{17}\text{H}_{33}\text{COO})_n^-$$

Константа равновесия:
$$K = \frac{a_M}{a_{D^+}^p a_{R^-}^n} = \frac{c_M}{c_{D^+}^p c_{R^-}^n} \frac{\gamma_M}{\gamma_{D^+}^p \gamma_{R^-}^n}$$

$$\Delta G^{\circ} = -\frac{RT}{n} \ln K$$
 (в расчете на 1 моль R^{-})

$$\Delta G^{\circ} = -\left(\frac{RT}{n}\ln c_M - \frac{RT}{n}\ln c_{D^+}^p c_{R^-}^n + \frac{RT}{n}\ln \frac{\gamma_M}{\gamma_{D^+}^p \gamma_{R^-}^n}\right)$$

Считаем раствор разбавленным, c_{M} - мало, тогда

$$\Delta G^{\circ} = \frac{RT}{n} \ln c_{D}^{p} + c_{R}^{n}$$

При ККМ
$$c_{D^+} = c_{R^-} =$$
 ККМ

$$\Delta G^{\circ} = \frac{RT}{n} \ln KKM^{p+n}$$

$$\Delta G^{\circ} = \frac{p+n}{n} RT \ln KKM = \left(1 + \frac{p}{n}\right) RT \ln KKM$$

Для полностью диссоциированных: p=0, для полного ионного связывания

$$\frac{p}{n} = 1$$
. Для ионогенных $0 < \frac{p}{n} < 1$

Коэффициенты активности

Термодинамика мицеллообразования

$$\Delta G^{\circ} = \frac{p+n}{n} RT \ln KKM = \left(1 + \frac{p}{n}\right) RT \ln KKM$$

$$\frac{\partial \ln K}{\partial T} = \frac{\Delta H}{RT^2}$$

Считаем, что размер мицеллы не зависит от температуры

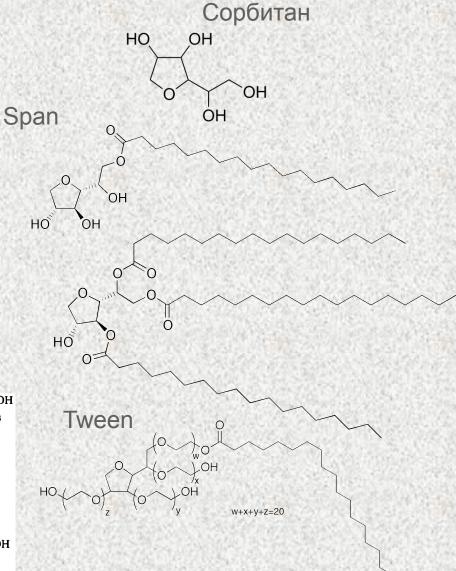
$$\ln K = -\frac{p+n}{n} \ln KKM$$

$$-\frac{\Delta H}{RT^2} = \left(1 + \frac{p}{n}\right) \frac{\partial \ln KKM}{\partial T}$$

$$\left(1 + \frac{p}{n}\right) \ln KKM = \frac{\Delta H}{RT} + const$$

Пусть полная диссоциация, p=0, тогда $\ln KKM = \frac{\Delta H}{RT} + const$ При полном связывании $\frac{p}{n}=1$, тогда $2\ln KKM = \frac{\Delta H}{RT} + const$ $\Delta S^\circ = \frac{1}{T} \left(\Delta H^\circ - \Delta G^\circ\right) = -RT \left(1 + \frac{p}{n}\right) \frac{\partial \ln KKM}{\partial T} - \left(1 + \frac{p}{n}\right) R \ln KKM$ - не учитывает изменение структуры растворителя.

Химия ПАВ


Химическая структура и типы ПАВ

Тип ПАВ		Химические структуры
Ионогенные	Анионные	Соли карбоновых кислот RCOO $^{-}$ Me $^{+}$ (R=C $_{8}$ C $_{20}$) Алкиларилсульфонаты RArSO $_{3}^{-}$ Me $^{+}$ Алкилсульфаты ROSO $_{3}^{-}$ Me $^{+}$ (R=C $_{10}$ C $_{20}$) Алкилсульфонаты RSO $_{3}^{-}$ Me $^{+}$ (R=C $_{10}$ C $_{20}$) Фосфаты (соли неполных эфиров фосфорных кислот)
	Катионные	Жирные амины Соли четвертичных аммониевых оснований [RN(R') ₃] ⁺ X ⁻ (R=C ₁₂ C ₁₈ , R'=CH ₃ , C ₂ H ₅ , X ⁻ =Cl ⁻ , Br ⁻) Соли пиридиновых оснований
	Амфолитные и цвиттерионные	Аминокислоты, алкиламинокислоты Бетаины RN⁺(CH ₃) ₂ CH ₂ COO⁻
Неионогенные		См. далее

Химия ПАВ

Ассортимент коммерчески доступных неионогенных ПАВ

Полиэтиленгликоли Плюроники (pluronics) HO Brij Brij-30 Brij-35 Brij-58 Brij-78

Гидрофильно-липофильный баланс

Гидрофильно-липофильный баланс (ГЛБ) – количественное выражение соотношения между гидрофильными свойствами полярной группы и липофильными свойствами углеводородного радикала Постулируются значения ГЛБ:

Гидрофобность

- Для олеата натрия 18;
- Для триэтаноламина 12;
- Для олеиновой кислоты 1.

ГЛБ можно рассчитать по вкладу отдельных групп, входящих в структуру.

Формула:

$$\Gamma \Pi F = 7 + \sum (\text{чисел гидрофильных групп}) + \sum (\text{чисел гидрофобных групп})$$

 Γ ЛБ = 7 + 0,36 $\ln \frac{c_{\rm B}}{c_{\rm B}}$ Отношение растворимостей в водной и масляной фазах, коэффициент распределения

Диапазон чисел ГЛБ	Применение ПАВ
3-6	Эмульгаторы для систем «вода в масле»
7-9	Смачивающие агенты
8-14	Эмульгаторы для систем «масло в воде»
9-13	Моющие составы
10-13	Стабилизаторы
12-17	Диспергаторы

Принципы подбора ПАВ по ГЛБ

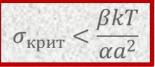
Правила подбора ПАВ-эмульгатора:

- 1) ПАВ должно обладать выраженной склонностью мигрировать к межфазной поверхности;
- 2) Маслорастворимые ПАВ преимущественно образуют эмульсии «вода в масле», и наоборот;
- 3) Устойчивые эмульсии часто образуются при использовании смеси гидрофильного и гидрофобного ПАВ;
- 4) Чем более полярна масляная фаза, тем выше должна быть гидрофильность эмульгатора (и наоборот)

Пример:

Состав эмульсии

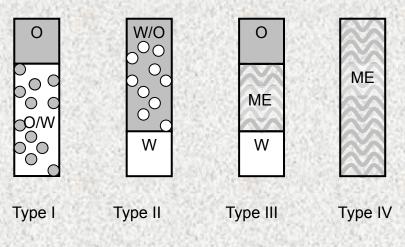
Компонент	% масс.	ГЛБ
Парафиновое масло	20	10,0
Ароматическое	80	13,0
минеральное масло		

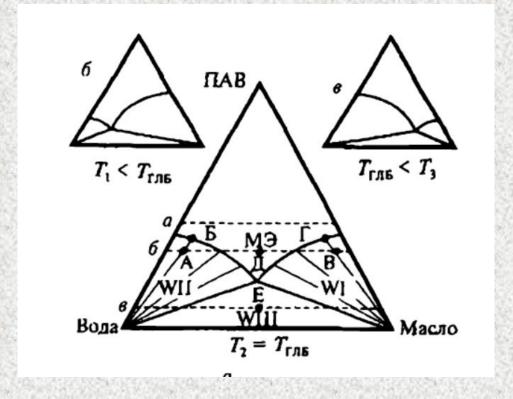

ГЛБ смеси: $0.2 \times 10.0 + 0.8 \times 13.0 = 12.4$

Используем два ПАВ с ГЛБ 17,0 и 5,3. Если их взять в соотношении 60:40, то ГЛБ этой смеси: $0.6 \times 17.0 + 0.4 \times 5.3 = 12.3$ – совпадает с ГЛБ эмульгируемой смеси, подходит.

Микроэмульсии

Различия между эмульсиями и микроэмульсиями


Эмульсии	Микроэмульсии
Самопроизвольно не образуются	Образуются самопроизвольно
Неустойчивы, расслаиваются с течением времени	Термодинамически устойчивые системы
Капли относительно большие (1-10 мкм)	Небольшие агрегаты (~10 нм)
Внутренняя поверхность относительно невелика, стабилизируется умеренным количеством ПАВ	Внутренняя поверхность очень большая, необходимо большое количество ПАВ
Кривизна межфазной поверхности небольшая	Межфазные пленки могут иметь большую кривизну
Как правило, непрозрачны	Прозрачны, могут слегка опалесцировать


- условие самопроизвольного диспергирования

Микроэмульсии

Классификация микроэмульсий по Винзору

T_{ГЛБ} – температура, при которой фазовая диаграмм симметрична

