Действительный анализ

Основной источник: Смагин В.В. Действительный анализ. Учебное пособие. 2014 год.

(см. <u>https://vk.com/fd_an</u>)

Дополнительная литература

- 1. Шилов Г.Е., Гуревич Б.Л. Интеграл, мера и производная, 1967 г.
- 2. Рисс Ф., Секефальви-Надь Б. Лекции по функциональному анализу, 1979 г.
- 3. Колмогоров А.Н., Фомин С.В. Элементы теории функций и функционального анализа, 1976 г.

(см. https://vk.com/func an)

Глава 1. Интеграл Лебега

(продолжение)

4. Множество функций $C^+[a, b]$

Определение множества $C^+[a, b]$

Множество $C^+[a,b]$ (или просто C^+) состоит из функций x(t) таких, что:

- 1) x(t) определена п.в. на [a, b];
- 2) существует такая последовательность $\{h_n(t)\}$ ступенчатых на [a,b] функций, что $h_n(t)\nearrow x(t)$ при $n\to\infty$ и $(\exists c\geq 0)(\forall n\in\mathbb{N})\,[\,Ih_n\leq c\,].$

Замечание. Первое условие из определения означает, что множество

 $A_1 = \{t \in [a, b] \mid x(t) - \text{не определена}\} - \text{ММН}.$ Из второго условия следует, что множество $A_2 = \{t \in [a, b] \mid h_n(t) \nearrow x(t)\} - \text{ММН}.$

Свойство. Если $x(t) \stackrel{\text{п.в.}}{=} y(t)$ и функция $x \in C^+[a,b]$, то и функция $y \in C^+[a,b]$.

(Доказать самостоятельно.)

Примеры функций из С+

1. Всякая ступенчатая на [a,b] функция h(t) принадлежит $C^+[a,b]$: h(t) определена п.в. на [a,b] (кроме, может быть, точек разбиения); последовательность $\{h_n(t) \equiv h(t)\}_{n=1}^{\infty}$ сходится п.в. к h(t), не убывая, причем $Ih_n = Ih = const \ \forall n$.

2. Функция Дирихле на отрезке [0,1]

$$x(t) = \begin{cases} 1, & t \in [0,1] \cap \mathbb{Q}, \\ 0, & t \in [0,1] \setminus \mathbb{Q}. \end{cases}$$

почти

$$x(t) = 0 \Rightarrow \{h_n(t) \equiv 0\}_{n=1}^{\infty}$$
 сходится п.в. к $x(t)$,

не убывая. Следовательно, $x \in C^+[0,1]$.

3. Всякая непрерывная на [а,b] функция

принадлежит $C^+[a,b]$.

Пусть [a,b]=[0,1]. Рассмотрим

последовательность разбиений отрезка [0,1]:

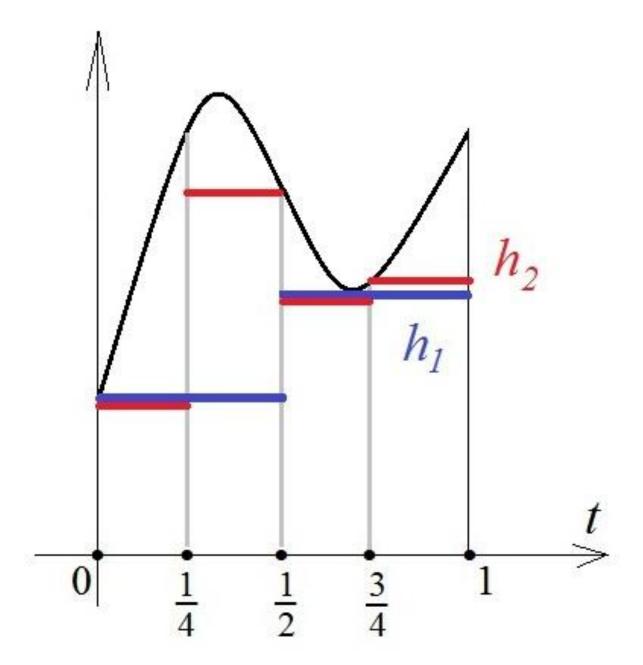
$$P_n = \{0, \frac{1}{2^n}, \frac{2}{2^n}, \frac{3}{2^n}, \dots, \frac{2^n - 1}{2^n}, 1\}.$$

Построим последовательность $\left\{h_n(t)\right\}_{n=1}^{\infty}$

ступенчатых на [0,1] функций : $h_n(t) = \min_{\tau \in \overline{\Delta}_b^n} x(\tau)$ на

интервале
$$\Delta_k^n = \left(\frac{k-1}{2^n}, \frac{k}{2^n}\right), k = \overline{1, 2^n}$$

$$(\overline{\Delta}_k^n = \left| \frac{k-1}{2^n}, \frac{k}{2^n} \right|$$
 — замыкание Δ_k^n).



Тогда $h_n(t) \to x(t)$ п.в. на [0,1], монотонно возрастая (не убывая).

А в силу того, что п.в. на [0,1] $h_n(t) \le x(t)$ при $\forall n$, имеем : $Ih_n \le (R) \int_0^1 x(t) dt = C$ при $\forall n$ (по свойству интеграла Римана).

Следовательно, $x \in C^{+}[0,1]$.

4. Рассмотрим функцию на отрезке [0,1]:

$$x(t) = \begin{cases} \cos t, & t \in [0,1] \setminus D, \overset{\textit{no umu}}{\textit{echody}} \\ \sin t, & t \in D \end{cases} = \cos t = y(t),$$

(D - множество Кантора).

Так как функция $y(t) = \cos t$ непрерывна на [0,1], то $y \in C^+[0,1] \Rightarrow x \in C^+[0,1]$.

ЛЕММА 9. Пусть функции $x, y \in C^+$. Тогда множеству C^+ принадлежат и следующие функции:

 $\alpha x(t)$ при $\alpha \geq 0$, $\quad x(t) + y(t)$, $\quad \min\{x(t), y(t)\}$, $\max\{x(t), y(t)\}$.

Доказательство. Для функций $\alpha x(t)$ и x(t) + y(t) утверждение леммы очевидно.

Докажем, что $z(t) = \min\{x(t), y(t)\} \in C^+$. Пусть $\{h_n(t)\}$ и $\{k_n(t)\}$ — последовательности ступенчатых на [a,b] функций, такие, что $h_n(t) \nearrow x(t)$ и $k_n(t) \nearrow y(t)$, причем $Ih_n \le c_1$ и $Ik_n \le c_2 \ \forall n$. Далее заметим, что ступенчатые функции $l_n(t) = \min\{h_n(t), k_n(t)\} \nearrow z(t)$ и, наконец, $Il_n \le Ih_n \le c_1 \ \forall n$.

Принадлежность к C^+ функции $\max\{x(t),y(t)\}$ – без доказательства.

ТЕОРЕМА 1. Всякая функция $x \in C^+[a,b]$ почти всюду конечна.

(Без доказательства.)

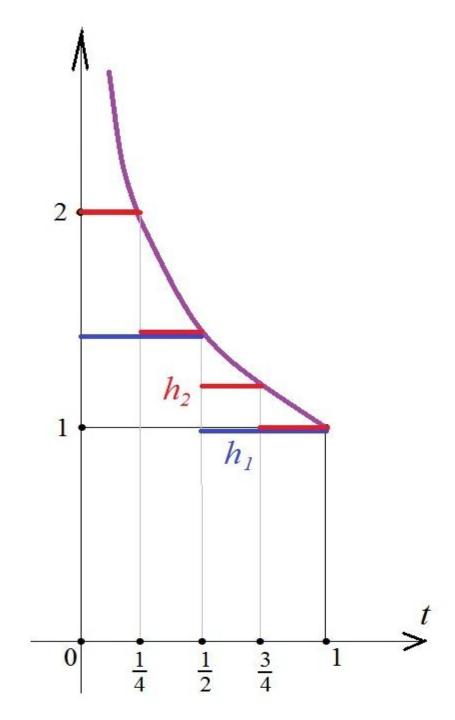
Следствие. Всякая функция $x \in C^+$ является измеримой.

Пример. Функция $x \in C^+[0,1]$, но $(-x) \notin C^+[0,1]$.

Рассмотрим функцию $x(t) = \frac{1}{\sqrt{t}}$ на отрезке [0,1]. Она определена на полуинтервале (0,1], то есть п.в. на [0,1]. Несобственный интеграл от неограниченной функции $x(t) = \frac{1}{\sqrt{t}}$: $(R_{\infty}) \int_{0}^{1} x(t) dt = 2$.

Рассмотрим последовательность разбиений отрезка [0,1]:

$$P_n = \{0, \frac{1}{2^n}, \frac{2}{2^n}, \frac{3}{2^n}, \dots, \frac{2^n - 1}{2^n}, 1\}.$$



Построим последовательность ступенчатых на

$$[0,1]$$
 функций $h_n(t)$: $h_n(t) = \min_{\tau \in \overline{\Delta}_k^n} x(\tau) = x \left(\frac{k}{2^n}\right)$ на

интервале
$$\Delta_k^n = \left(\frac{k-1}{2^n}, \frac{k}{2^n}\right), k = \overline{1, 2^n}$$

$$(\overline{\Delta}_k^n = \left[\frac{k-1}{2^n}, \frac{k}{2^n}\right]$$
 — замыкание Δ_k^n).

Тогда $h_n(t) \to x(t)$ п.в. на [0,1], монотонно возрастая (не убывая).

А в силу того, что п.в. на [0,1] $h_n(t) \le x(t)$ при $\forall n$, имеем : $Ih_n \le (R_\infty) \int\limits_0^1 x(t) dt = 2$ при $\forall n$.

Следовательно, $x \in C^{+}[0,1]$.

Покажем, что $y = -x \notin C^+[0,1]$.

Предположим противное : $y = -x \in C^+[0,1]$. Тогда существует последовательность ступенчатых на [0,1] функций $k_n(t)$, которая сходится к y(t) п.в. на [0,1], монотонно возрастая, причем $Ik_n \leq C$ при $\forall n$.

Пусть $A \subset [0,1]$ — множество, на котором нарушается монотонная сходимость функций $k_n(t)$ к y(t), то есть A — ММН. Рассмотрим также счетное множество B — объединение всех разбиений, соответствующих функциям $k_n(t)$. Следовательно, $D = A \bigcup B$ — ММН.

Тогда для $(\forall t \in [0,1] \setminus D)$ $[k_1(t) \le k_2(t) \le k_3(t) \le \dots].$

Пусть $\alpha = \min_{t \in [0,1] \setminus D} k_1(t)$. Тогда для $(\forall t \in [0,1] \setminus D)(\forall n)$ $[k_n(t) \ge k_1(t) \ge \alpha]$.

Так как $y(t) \to -\infty$ при $t \to 0$, то $(\exists t_0 > 0) (\forall t \in (0, t_0)) [y(t) < \alpha - 1].$

Тогда $(\forall t \in (0, t_0) \setminus D)[k_n(t) - y(t) > 1].$

Следовательно, $(\forall t \in (0, t_0) \setminus D)[k_n(t) \leftrightarrow y(t)].$

Но, поскольку $(0, t_0) \setminus D$ — не ММН, мы получили противоречие условию сходимости $k_n(t)$ к y(t) п.в. на [0,1]. Итак, наше предположение неверно и $y = -x \notin C^+[0,1]$.

5. Интеграл в множестве $C^+[a,b]$

Пусть функция $x \in C^+$. Тогда 1) x(t) определена п.в. на [a,b] и 2) существует последовательность $\{h_n(t)\}$ ступенчатых на [a,b] функций, что $h_n(t) \nearrow x(t)$ при $n \to \infty$ и $(\exists c \ge 0) (\forall n \in \mathbb{N}) [Ih_n \le c]$.

По свойству интеграла от ступенчатой функции (см. лемму 6), числовая последовательность $\{Ih_n\}$ монотонно возрастает. При этом она ограничена сверху.

Тогда существует конечный $\lim_{n\to\infty} Ih_n$.

ЛЕММА 10. Пусть функции $x, y \in C^+$ и $x(t) \le y(t)$ п.в. на [a, b]. Пусть $\{h_n(t)\}$ и $\{k_n(t)\}$ ступенчатые функции такие, что: $h_n(t) \nearrow x(t)$, $k_n(t) \nearrow y(t)$, $Ih_n \le c_1$, $Ik_n \le c_2$. Тогда $\lim_{n\to\infty} Ih_n \le \lim_{n\to\infty} Ik_n$.

(Без доказательства.)

Определим теперь интеграл для $x \in C^+$ следующим образом:

$$(C^+)Ix = \lim_{n \to \infty} Ih_n. \tag{4}$$

Из леммы 10 следует, что это определение $(C^+)Ix$ не зависит от выбора последовательности ступенчатых функций $\{h_n\}$ и, следовательно, корректно.

Это замечание позволяет переформулировать лемму 10.

СЛЕДСТВИЕ. Пусть функции $x, y \in C^+$ и $x(t) \le y(t)$ п.в. на [a, b]. Тогда $(C^+)Ix \le (C^+)Iy$.

Свойство. Если на [a,b] выполняется $x(t) \stackrel{\text{п.в.}}{=} y(t)$ и функция $x \in C^+$, то $(C^+)Ix = (C^+)Iy$. (Доказать самостоятельно.)

Непосредственно из определения интеграла (4) следует

ЛЕММА 11 (свойства интеграла). Пусть функции $x, y \in C^+$. Тогда:

- 1) $(\forall \alpha \geq 0)[(C^+)I(\alpha x) = \alpha(C^+)Ix];$
- 2) $(C^+)I(x+y) = (C^+)Ix + (C^+)Iy$.

(Доказать самостоятельно.)

ТЕОРЕМА 2. Пусть задана последовательность функций $\{x_n\} \subset C^+$ такая, что $x_n(t) \nearrow x(t)$ и $(\exists c)(\forall n) [(C^+)Ix_n \leq c].$ Тогда функция $x \in C^+$ и $(C^+)Ix = \lim_{n \to \infty} (C^+)Ix_n$. (Без доказательства.)

Следствие. Пусть дан функциональный ряд $\sum_{k=1}^{\infty} y_k(t)$, где все функции $y_k \in C^+$ и $y_k(t) \geq 0$. Пусть также $(\exists c)(\forall n) [\sum_{k=1}^n (C^+)Iy_k \leq c]$. Тогда функция $x(t) = \sum_{k=1}^{\infty} y_k(t) \in C^+$ и $(C^+)Ix = \sum_{k=1}^{\infty} (C^+)Iy_k$. Доказательство. Следует определить функции $x_n(t) = \sum_{k=1}^n y_k(t)$ и применить доказанную теорему 2.