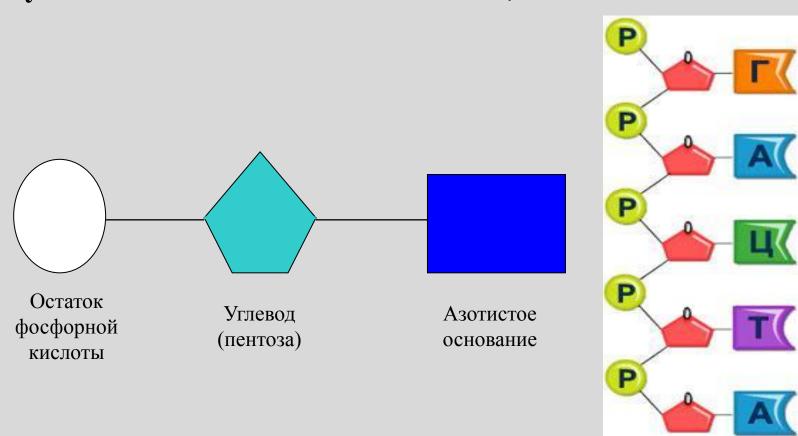

Биосинтез белка

Нуклеиновые кислоты.

Представляют собой высокомолекулярные биополимеры, состоящие из нуклеотидов, соединенных между собой фосфодиэфирными связями.

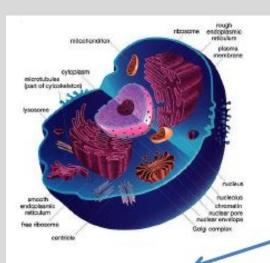

ВИДЫ НУКЛЕИНОВЫХ КИСЛОТ

В зависимости от строения углевода, входящего в состав нуклеотидов, выделяют рибонуклеиновые кислоты (РНК) содержащие рибозу, И дезоксирибонуклеи новые кислоты (ДНК) – содержащие дезоксирибозу.

Строение нуклеотида

Нуклеотид –химическое соединение, состоящее из:

Сравнительная характеристика ДНК и РНК


ДНК

- 1. Биологический полимер
- 2. Мономер нуклеотид
- 3. 4 типа азотистых оснований: аденин, тимин, гуанин, цитозин.
- 4. Комплементарные пары: аденин-тимин, гуанин-цитозин
- 5. Местонахождение ядро, митохондрии, пластиды
- 6. Функции хранение наследственной информации
- 7. Сахар дезоксирибоза

РНК

- 1. Биологический полимер
- 2. Мономер нуклеотид
- 3. 4 типа азотистых оснований: аденин, гуанин, цитозин, урацил
- 4. Комплементарные пары: аденин-урацил, гуанинцитозин
- 5. Местонахождение ядро, цитоплазма
- 6. Функции перенос, передача наследственной информации.
- 7. Сахар рибоза

ВИДЫ РНК

Клетка млекопитающего содержит около 20-30 пикограмм РНК, что составляет около 1% массы клетки.

Тотальная РНК

Рибосомальная РНК Около 80%

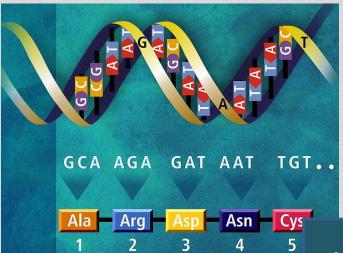
Транспортная РНК Около 15% **MPHK**

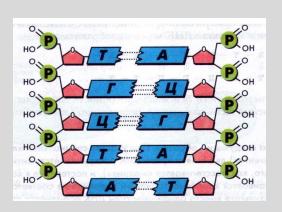
Около 4%

Генетический код

система записи генетической информации в молекуле нуклеиновой кислоты о строении молекулы полипептида, количестве, последовательности расположения и типах аминокислот.

Ген- это элементарная единица наследственной информации **


Регуляторные Обеспечивают активацию или подавление считывания информации.


Структурные

Кодируют первичную структуру белка, pPHK, и тPHK.

Ген –это участок молекулы ДНК, кодирующий первичную структуру одной полипептидной цепи.

Генетический код

Наследственная информация организмов зашифрована в ДНК в виде генетического кода-определенных сочетаний нуклеотидов и их последовательности.

Свойства генетического кода

Однозначность

Определённый кодон соответствует только одной аминокислоте.

Непрерывность

Между триплетами нет знаков препинания, то есть информация считывается непрерывно.

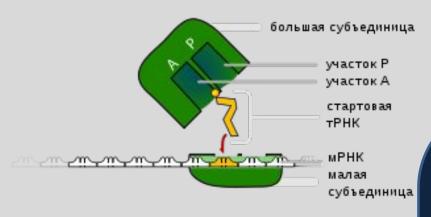
Неперекрываемост ь Один и тот же нуклеотид не может входить одновременно в состав двух или более триплетов.

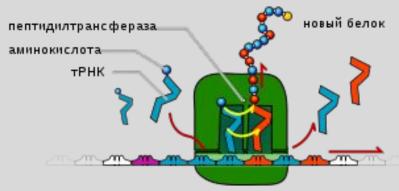
Свойства генетического кода

Триплетность

Значащей единицей кода является сочетание трёх нуклеотидов (триплет или кодон).

Универсальност


Генетический код работает одинаково в организмах разного уровня сложности — от вирусов до человека .


Вырожденность

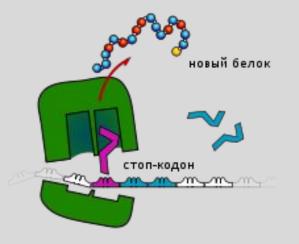

Одной и той же аминокислоте может соответствовать несколько кодонов.

Таблица генетического кода (и-РНК)

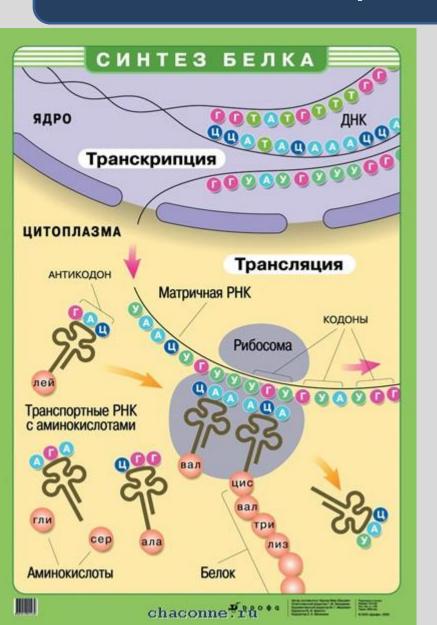
Нуклеотид								
1-й	2-й							
	y	ц	A	•	3-й			
y	ууц ууц } Фенилаланин ууа ууг } Лейцин	уцу уцц уца уцг	УАУ УАЦ Тирозин УАА УАГ	УГУ УГЦ Нистеин УГА <i>стоп-кодон</i> УГГ Триптофан	УЦAГ			
7	цуу цуц цуа цуг	ЦЦУ ЦЦЦ ЦЦА ЦЦГ	цац Глютамин цаг	ЦГУ ЦГЦ ЦГА ЦГГ	У Д А			
A	АУУ АУЦ Изолейцин АУА Метионин Старт-кодон	АЦУ АЦЦ АЦА АЦГ	ААЦ Аспарагин ААА Лизин	АГУ АГЦ Серин АГА Аргинин	У Ц А			
-	ГУУ ГУЦ ГУА ГУГ	гцу гцц гца гцг	ГАУ Аспарагиновая ГАЦ кислота ГАА Глутаминовая ГАГ кислота	ГГУ ГГЦ ГГА ГГГ	У Ц А			

Биосинтез белка — СЛОЖНЫЙ многостадийный процесс синтеза полипептидной цепи из аминокислот, происходящий на рибосомах с участием молекул иРНК и тРНК. Процесс биосинтеза белка требует значительных затрат энергии.

Сложность процесса – биосинтез белка

Этапы биосинтеза белка

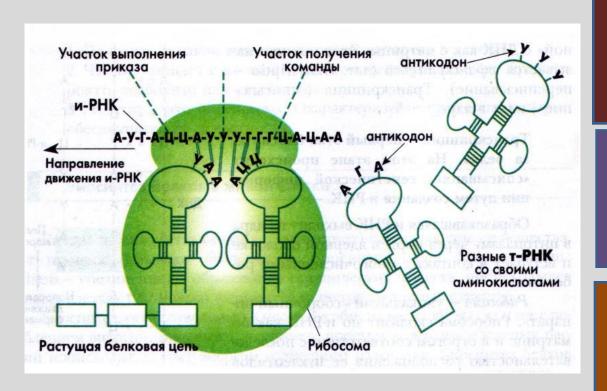
Транскрипция – биосинтез молекул иРНК на соответствующих участках ДНК.


Трансляция – это биосинтез полипептидной цепи на молекуле иРНК.

Протекает в ядре, митохондриях, пластидах с участием фермента РНК-полимеразы.

Протекает в цитоплазме, при наличии рибосом, активной т РНК, ионов Mg.

Транскрипция


Проходит в ядре клетки.

Необходима цепь ДНКматрица.

Присутствует фермент РНК- полимераза.

Наличие свободных дезоксирибонуклеозидфосфат ов.

Трансляция

Протекает в цитоплазме.

Необходимо наличие рибосом и иРНК

В цитоплазме должны присутствовать тРНК и аминокислоты.

Все процессы идут с затратой энергии и в присутствии ферментов.

Транспортные РНК

Строение тРНК:

содержат обычно 76 (от 75 до 95) нуклеотидов.

Функции тРНК:

- 1) транспорт аминокислот к месту синтеза белка, к рибосомам,
- 2) трансляционный посредник.

Таблица генетического кода (и-РНК)

Нуклеотид								
1-й	2-й							
	y	ц	A	•	3-й			
У	ууц ууц } Фенилаланин ууа ууг } Лейцин	уцу уцц уца уцг	УАУ УАЦ Тирозин УАА УАГ Стоп-кодоны	УГУ УГЦ } Цистеин УГА <i>стоп-кодон</i> УГГ Триптофан	УЦAГ			
7	цуу цуц цуа цуг	ЦЦУ ЦЦЦ ЦЦА ЦЦГ	цац Глютамин цаг	ЦГУ ЦГЦ ЦГА ЦГГ	У Д А			
A	АУУ АУЦ Изолейцин АУА Метионин старт-кодон	АЦУ АЦЦ АЦА АЦГ	ААУ ААЦ АСПАРАГИН ААА ЛИЗИН	АГУ АГЦ Серин АГА АГГ	У Ц А			
г	ГУУ ГУЦ ГУА ГУГ	гцу гцц гца гцг	ГАУ Аспарагиновая ГАЦ кислота ГАА Глутаминовая ГАГ кислота	ГГУ ГГД ГГА	У Ц А			

Домашнее задание

Используя знания о биосинтезе белка выполните задания

Пример решения. Дана (кодирующая) цепь ДНК: ЦТААТГТААЦЦА. Определите (используя таблицу генетического кода слайд №10): первичную структуру закодированного белка.

Ответ: ДНК: ЦТААТГТААЦЦА (по принципу комплементарности находим цепь иРНК) иРНК ГАУУАЦАУУГГУ (используя таблицу ген.кода находим белок)

Белок: аспарагиновая к-та-тирозин-изолейцин-глицин

Самостоятельно

- 1. Одна из цепочек ДНК имеет последовательность нуклеотидов: АГТ АЦЦ ГАТ АЦТ ЦГА ТТТ АЦГ ... Какую последовательность нуклеотидов имеет вторая цепочка ДНК той же молекулы.
- 2. Последовательность нуклеотидов в начале гена, хранящего информацию о белке инсулине, начинается так: ААА ЦАЦ ЦТГ ЦТТ ГТА ГАЦ. Напишите последовательности аминокислот, которой начинается цепь инсулина.

3. Фрагмент цепи иРНК имеет следующую последовательность нуклеотидов: ЦУАЦААГГЦУАУ. Определите последовательность нуклеотидов на ДНК, антикодоны соответствующих тРНК и аминокислотную последовательность соответствующего фрагмента молекулы белка, используя таблицу генетического кода.

4. Фрагмент нуклеотидной цепи ДНК имеет последовательность ЦЦАТАГЦ. Определите нуклеотидную последовательность второй цепи и общее число водородных связей, которые образуются между двумя цепями ДНК (если известно, что между А=Т (2 водородные связи, а между Г=Ц (3 водородные связи)

5. В одной молекуле ДНК нуклеотидов с тимином Т -22%. Определите процентное содержание нуклеотидов с А, Г, Ц по отдельности в этой молекуле ДНК.