6.7. Примеры решения задач.

Водородоподобные атомы.

Оптические спектры излучения.

<u>**41.**</u> Найти радиусы r_k трёх первых боровских электронных орбит в атоме водорода и скорости v_k электрона на них.

Дано:

$$k_1 = 1$$

 $k_3 = 3$
 $r_k - ?$
 $V_k - ?$

Решение.

Согласно теории Бора, электрон в атоме водорода может находиться на орбитах с радиусами

$$R_n = 4\pi\varepsilon_0 \frac{\mathbb{Z}^2}{mZe^2} n^2.$$

Здесь n — целое число, Z = 1.

Радиус орбиты произвольного состояния с любым номером п удобно выражать через радиус первой боровской орбиты:

$$R_n=R_1\cdot n^2$$
. Для атома водорода (${m Z}=1$) $R_1=4\pi arepsilon_0 rac{{\Bbb N}^2}{me^2} n^2=0,529\cdot 10^{-10}$ (м). $R_2=R_1\cdot 2^2=4\cdot 0,529\cdot 10^{-10}pprox 2,12\cdot 10^{-10}$ (м). $R_3=R_1\cdot 3^2=9\cdot 0,529\cdot 10^{-10}pprox 4,76\cdot 10^{-10}$ (м).

<u>**41.**</u> Найти радиусы r_k трёх первых боровских электронных орбит в атоме водорода и скорости v_k электрона на них.

<u>Решение (продолжение).</u>

Скорость электрона в атоме водорода определим из второго закона Ньютона.

$$ma = \frac{1}{4\pi\varepsilon_0} \frac{Ze^2}{R^2}, \qquad a = \frac{V^2}{R}.$$

где V - скорость электрона, R - радиус орбиты, Z = 1.

$$m\frac{V^2}{R} = \frac{1}{4\pi\varepsilon_0} \frac{e^2}{R^2},$$

$$V_n = \sqrt{\frac{1}{4\pi\varepsilon_0} \frac{e^2}{mR_n}}.$$

$$R_1 = 4\pi\varepsilon_0 \frac{\mathbb{Z}^2}{me^2} n^2 = 0,529 \cdot 10^{-10}$$
 (M).

$$R_2 = 2^2 \cdot R_1 \approx 2,12 \cdot 10^{-10}$$
 (M). $R_3 = R_1 \cdot 3^2 \approx 4,76 \cdot 10^{-10}$ (M).

<u>**41.**</u> Найти радиусы r_k трёх первых боровских электронных орбит в атоме водорода и скорости v_k электрона на них.

Решение (продолжение).

$$V_n = \sqrt{\frac{1}{4\pi\varepsilon_0} \frac{e^2}{mR_n}}.$$

$$V_1 = \sqrt{\frac{1}{4\pi \cdot 8,85 \cdot 10^{-12}}} \cdot \frac{2,56 \cdot 10^{-38}}{9,1 \cdot 10^{-31} \cdot 5,29 \cdot 10^{-11}} \approx 2,2 \cdot 10^6 \quad \text{(M/c)}.$$

$$V_n = \sqrt{\frac{1}{4\pi\varepsilon_0} \frac{e^2}{mR_1 n^2}} = \frac{V_1}{n}.$$

$$V_2 = \frac{V_1}{2} \approx 1,1 \cdot 10^6$$
 (m/c). $V_3 = \frac{V_1}{3} \approx 0,73 \cdot 10^6$ (m/c).

Ombem: $r_1 = 53 \text{ nm}$; $r_2 = 212 \text{ nm}$; $r_3 = 477 \text{ nm}$; $v_1 = 2,19 \cdot 10^6 \text{ m/c}$; $v_2 = 1,1 \cdot 10^6 \text{ m/c}$; $v_3 = 7,3 \cdot 10^5 \text{ m/c}$.

Найти период T обращения электрона на первой боровской орбите атома водорода и его угловую скорость ω.

Дано: Z = 1

n = 1 Угловую скорость электрона в атоме водорода определим из z = 1 второго закона Ньютона.

$$ma = \frac{1}{4\pi\varepsilon_0} \frac{Ze^2}{R^2}, \qquad a = \omega^2 R.$$

где ω - скорость электрона, \boldsymbol{R} - радиус орбиты, $\boldsymbol{Z}=1$.

$$m\omega^2 R = \frac{1}{4\pi\varepsilon_0} \frac{e^2}{R^2},$$

$$\omega = \sqrt{\frac{1}{4\pi\varepsilon_0} \frac{e^2}{mR^3}}.$$

$$\omega = \sqrt{\frac{1}{4\pi \cdot 8,85 \cdot 10^{-12}} \cdot \frac{2,56 \cdot 10^{-38}}{9,1 \cdot 10^{-31} \cdot 5,29^3 \cdot 10^{-33}}} \approx 4,4 \cdot 10^{16} \text{ (pad/c)}.$$

<u>42.</u> Найти период T обращения электрона на первой боровской орбите атома водорода и его угловую скорость

Решение (продолжение).

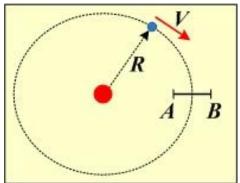
Период обращения по орбите связан с угловой скоростью простым соотношением:

$$T = \frac{2\pi}{\omega}$$
.

$$T = \frac{2\pi}{\omega} = \frac{6,28}{4.4 \cdot 10^{16}} \approx 1,43 \cdot 10^{-16} (c).$$

Ответ: $T = 1,43 \cdot 10^{-16} \text{ c}$; $\omega = 4,4 \cdot 10^{16} \text{ рад/c}$.

<u>**В2.**</u> Определить ток, соответствующий движению электрона по n-й орбите атома водорода.


<u>Решение .</u>

Ток, связанный с движением электрона в атоме водорода $I = \frac{\Delta q}{\Delta t}$.

$$I = \frac{\Delta q}{\Delta t}.$$

 Δq – заряд, проходящий через поперечное сечение проводника за время Δt .

В качестве сечения проводника рассмотрим плоскость AB на рисунке. Её пересекает один электрон за время, равное периоду обращения электрона вокруг ядра.

$$\Delta q = e,$$
 $\Delta t = T.$
$$I = \frac{\Delta q}{\Delta t} = \frac{e}{T}, \qquad T = \frac{2\pi}{\omega}, \qquad I = \frac{\Delta q}{\Delta t} = \frac{e}{T} = \frac{1}{2\pi} e\omega.$$

Угловую скорость электрона ω в атоме водорода определим из второго закона Ньютона.

$$ma = \frac{1}{4\pi\varepsilon_0} \frac{Ze^2}{R^2}, \qquad a = \omega^2 R.$$

где ω - скорость электрона, R - радиус орбиты, Z=1.

<u>**В2.**</u> Определить ток, соответствующий движению электрона по n-й орбите атома водорода.

Решение (продолжение).

$$ma = \frac{1}{4\pi\varepsilon_0} \frac{Ze^2}{R^2}, \qquad a = \omega^2 R.$$

$$m\omega^2 R = \frac{1}{4\pi\varepsilon_0} \frac{e^2}{R^2}, \qquad \omega = \sqrt{\frac{1}{4\pi\varepsilon_0} \frac{e^2}{mR^3}}.$$

$$I = \frac{1}{2\pi} e\omega = \frac{1}{2\pi} e\sqrt{\frac{1}{4\pi\varepsilon_0} \frac{e^2}{mR^3}},$$

Согласно теории Бора, электрон в атоме водорода может находиться на орбитах с радиусами \mathbb{N}^2

$$R_n = 4\pi\varepsilon_0 \frac{\mathbb{Z}^2}{me^2} n^2,$$
 n – целое число.

$$I = \frac{1}{2\pi} e \sqrt{\frac{1}{4\pi\varepsilon_0} \frac{e^2}{mR^3}} = \frac{1}{2\pi} e \sqrt{\frac{1}{4\pi\varepsilon_0} \frac{e^2}{m} \cdot \frac{m^3 e^6}{\left(4\pi\varepsilon_0\right)^3 \boxtimes^6 n^6}},$$

<u>**В2.**</u> Определить ток, соответствующий движению электрона по n-й орбите атома водорода.

<u>Решение (продолжение) .</u>

$$I = \frac{1}{2\pi} e \sqrt{\frac{1}{4\pi\varepsilon_0} \frac{e^2}{m} \cdot \frac{m^3 e^6}{(4\pi\varepsilon_0)^3 \, \mathbb{Z}^6 n^6}} = \frac{1}{2\pi} e \sqrt{\frac{m^2 e^8}{(4\pi\varepsilon_0)^4 \, \mathbb{Z}^6 n^6}},$$

$$I = \frac{1}{2\pi} \frac{me^3}{\left(4\pi\varepsilon_0\right)^2 \mathbb{Z}^3 n^3}.$$

$$I = \frac{1}{2\pi} \frac{me^5}{\left(4\pi\varepsilon_0\right)^2 \mathbb{Z}^3 n^3} = \frac{81 \cdot 10^{18}}{6,28} \cdot \frac{9,1 \cdot 10^{-31} \cdot 10,49 \cdot 10^{-95}}{1,16 \cdot 10^{-102}} =$$

$$= \frac{7,73 \cdot 10^4}{7,27} \cdot \frac{10^{-108}}{10^{-102}} = 1,06 \cdot 10^{-2} (A).$$

Ombem: $I_1 = 1,06 \cdot 10^{-2} \text{ A}.$

<u>В1.</u> Фотон с энергией E = 16,5 эВ выбивает электрон из невозбуждённого атома водорода. Какую скорость будет иметь электрон вдали от ядра?

Дано: E = 16.5

$$E = 16,5 \ \ni B$$

$$n = 1$$

Решение.

Энергия электрона в основном состоянии в атоме водорода

$$E_{el} = E_1 = -13,6$$
 (3B).

После поглощения атомом фотона энергия электрона станет

$$E'_{el} = E_1 + E_{ph} = -13,6 + 16,5 = 2,9$$
 (3B).

Энергия электрона больше нуля, следовательно, он удалится от ядра атома на сколь угодно большое расстояние. При этом его потенциальная энергия станет равной нулю, а кинетическая

$$T = \frac{mV^2}{2} = E'_{el}.$$

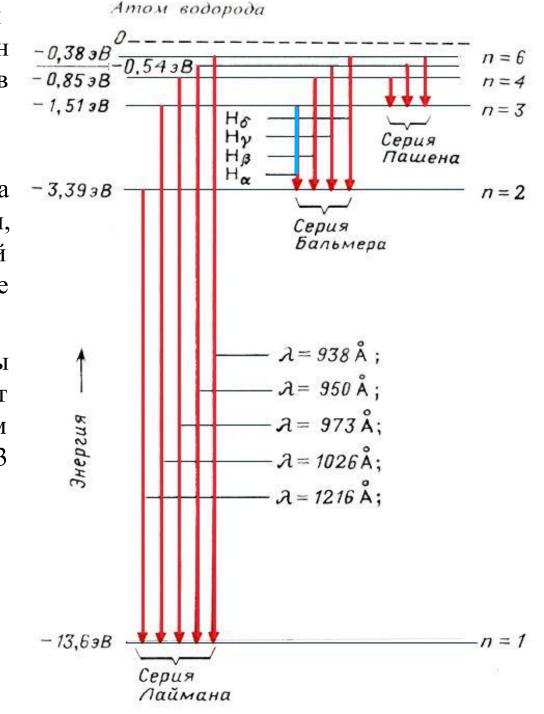
Скорость электрона на большом удалении от ядра

$$V = \sqrt{\frac{2E'_{el}}{m}}.$$

$$V = \sqrt{\frac{2E'_{el}}{m}} = \sqrt{\frac{2 \cdot 2, 9 \cdot 1, 6 \cdot 10^{-19}}{9, 1 \cdot 10^{-31}}} \approx 1, 0 \cdot 10^{6} \quad \text{(m/c)}.$$

Ombem: $v = 1.10^6 \text{ m/c}.$

43. Найти наименьшую λ_{min} и наибольшую λ_{max} длины волн $\frac{-0.383B}{-0.853B}$ спектральных линий водорода в $\frac{-0.543B}{-0.513B}$ видимой области спектра.


<u>Решение.</u>

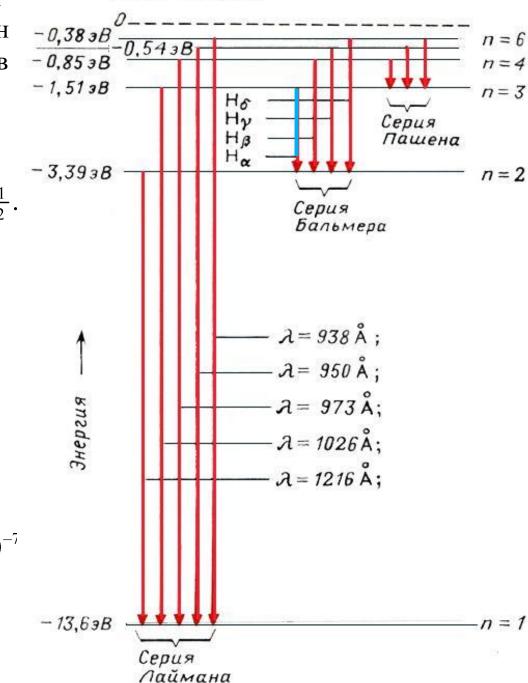
К видимой области спектра — 3,39 з в относятся спектральные линии, связанные с переходами на второй энергетический уровень в атоме водорода (серия Бальмера).

Наибольшую длину волны (минимальную энергию) будет иметь линия, связанная с переходом электрона с уровня с номером m=3 на уровень с номером n=2.

$$\frac{hc}{\lambda_{\text{max}}} = E_3 - E_2.$$

$$E_3 = \frac{E_1}{m^2}.$$
 $E_2 = \frac{E_1}{n^2}.$

<u>А3.</u> Найти наименьшую λ_{min} и наибольшую λ_{max} длины волн -0.383B 0---- спектральных линий водорода в -0.853Bвидимой области спектра.


Решение (продолжение).

$$\frac{hc}{\lambda_{\text{max}}} = E_3 - E_2.$$
 $E_3 = \frac{E_1}{m^2}.$ $E_2 = \frac{E_1}{n^2}.$

$$\frac{hc}{\lambda_{\max}} = E_1 \left(\frac{1}{m^2} - \frac{1}{n^2} \right).$$

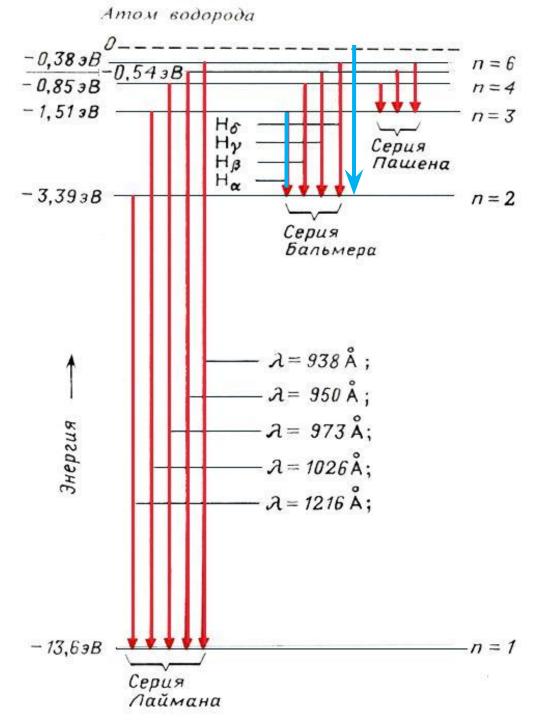
$$\lambda_{\text{max}} = \frac{hc}{E_1 \left(\frac{1}{m^2} - \frac{1}{n^2}\right)} =$$

$$= \frac{6,63 \cdot 10^{-34} \cdot 3 \cdot 10^{8}}{13,6 \cdot 1,6 \cdot 10^{-19} \left(\frac{1}{4} - \frac{1}{9}\right)} \approx 6,56 \cdot 10^{-7}$$

Атом водорода

43. Найти наименьшую λ_{min} и наибольшую λ_{max} длины волн $\frac{-0.383B}{-0.853B}$ спектральных линий водорода в $\frac{-0.543B}{-0.513B}$ видимой области спектра.

Решение (продолжение).


Наименьшую длину волны (максимальную энергию) будет иметь линия, связанная с переходом электрона с уровня с номером $m = \infty$ на уровень с номером n = 2.

$$\frac{hc}{\lambda_{\min}} = E_{\infty} - E_2.$$

$$E_{\infty}=0. \qquad E_2=\frac{E_1}{n^2}.$$

$$\frac{hc}{\lambda_{\min}} = 0 - E_2 = -\frac{E_1}{n^2}.$$

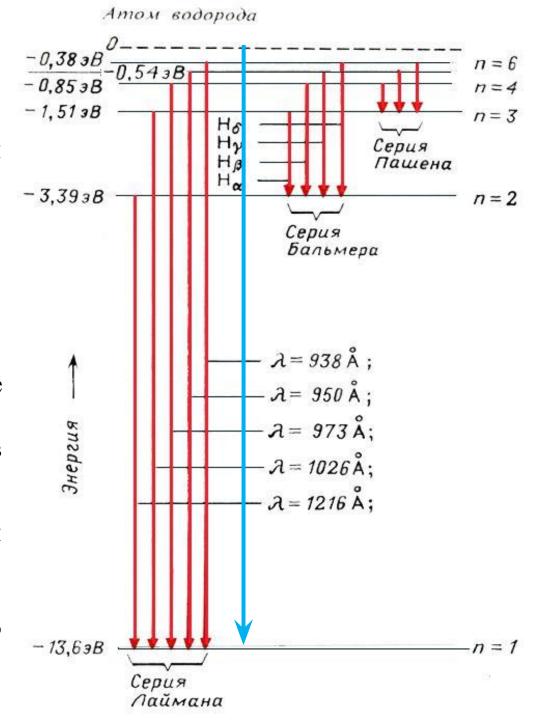
$$\lambda_{\min} = -\frac{hcn^2}{E}.$$

<u>А3.</u> Найти наименьшую λ_{min} и наибольшую λ_{max} длины волн спектральных линий водорода в видимой области спектра.

<u>Решение (продолжение).</u>

$$\lambda_{\min} = -\frac{hcn^2}{E_1}.$$

$$\lambda_{\min} = -\frac{hcn^2}{E_1} = \frac{-6.63 \cdot 10^{-34} \cdot 3 \cdot 10^8 \cdot 4}{-13.6 \cdot 1.6 \cdot 10^{-19}} \approx 3.65 \cdot 10^{-7} \text{ (M)}.$$


Omsem:
$$\lambda_{min} = 365 \text{ HM}; \lambda_{max} = 656 \text{ HM}.$$

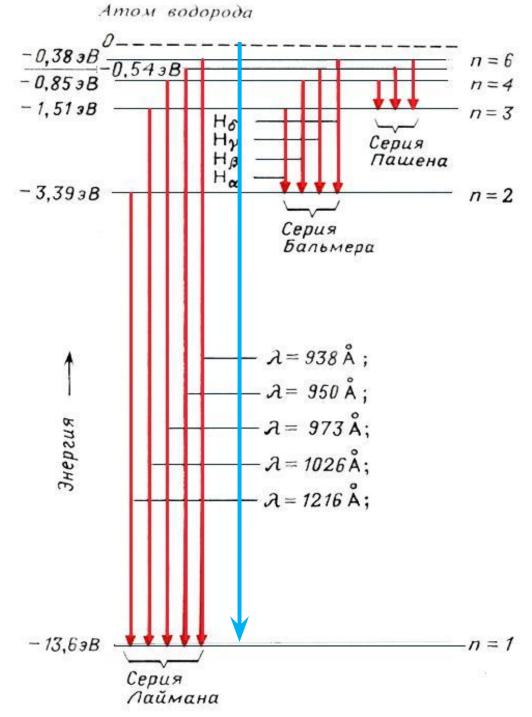
Найти наименьшую длину волны в ультрафиолетовой области Какую спектра водорода. наименьшую скорость v_{min} должны чтобы иметь электроны, при возбуждении атомов водорода ударами электронов появилась эта линия?

Решение.

К ультрафиолетовой области спектра относятся спектральные линии, связанные с переходами на первый энергетический уровень в атоме водорода (серия Лаймана).

Наименьшую длину волны (максимальную энергию) будет иметь линия, связанная с переходом электрона с уровня с номером $m = \infty$ на уровень с номером n = 1.

А4. Найти наименьшую длину волны в ультрафиолетовой области спектра водорода. Какую наименьшую скорость v_{min} должны иметь электроны, чтобы при возбуждении атомов водорода ударами электронов появилась эта линия?


Решение (продолжение).

$$\frac{hc}{\lambda_{\min}} = E_{\infty} - E_{1}.$$

$$E_{\infty} = 0. \qquad E_{n} = \frac{E_{1}}{n^{2}}.$$

$$\frac{hc}{\lambda_{\min}} = 0 - E_{n} = -\frac{E_{1}}{n^{2}}.$$

$$\lambda_{\min} = -\frac{hcn^{2}}{E_{1}}.$$

<u>**44.**</u> Найти наименьшую длину волны в ультрафиолетовой области спектра водорода. Какую наименьшую скорость v_{min} должны иметь электроны, чтобы при возбуждении атомов водорода ударами электронов появилась эта линия?

Решение (продолжение).

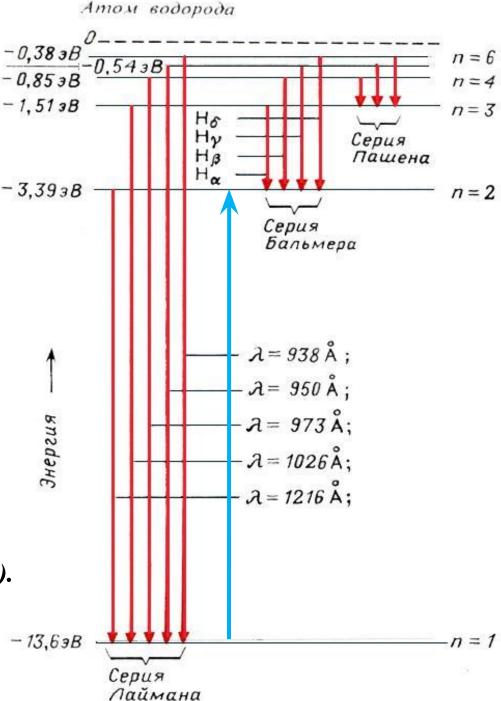
$$\lambda_{\min} = -\frac{hcn^2}{E_1}, \qquad n = 1.$$

$$\lambda_{\min} = -\frac{hcn^2}{E_1} = \frac{-6,63 \cdot 10^{-34} \cdot 3 \cdot 10^8}{-13,6 \cdot 1,6 \cdot 10^{-19}} \approx 0,91 \cdot 10^{-7} \text{ (M)}.$$

При возбуждении атома электронными ударами кинетическая энергия электрона должна быть больше (или равна) энергии возбуждения.

$$T = \frac{mV_{\min}^2}{2} = E_{\infty} - E_1 = -E_1 = +13,6 \text{ (3B)}.$$

$$V_{\min} = \sqrt{-\frac{2}{m}E_1} = \sqrt{-\frac{2 \cdot (-13,6) \cdot 1,6 \cdot 10^{-19}}{9,1 \cdot 10^{-31}}} \approx 2,2 \cdot 10^6 \text{ (M/c)}.$$


Omsem: $\lambda = 91,4 \text{ HM}; \ V_{min} = 2,20 \cdot 10^6 \text{ M/c}.$

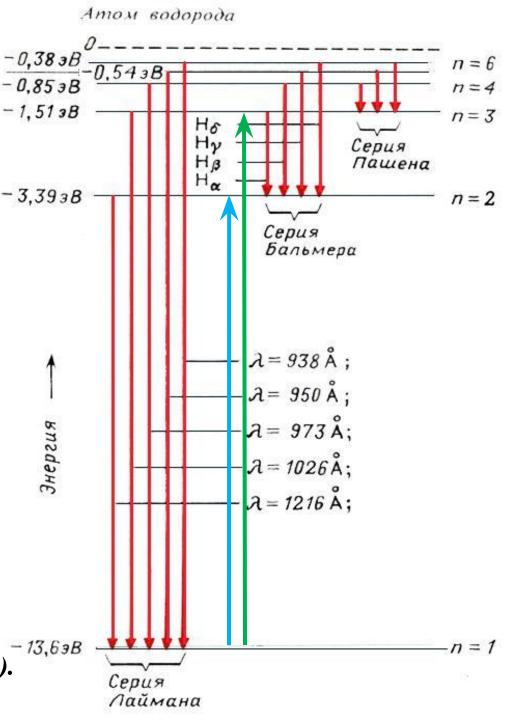
45. В каких пределах должна лежать энергия бомбардирующих электронов, чтобы при возбуждении атомов водорода ударами этих электронов спектр водорода имел только одну спектральную линию?

Решение.

Для того, чтобы было возможно наблюдать только одну спектральную линию, энергия электрона в атоме должна возрасти на величину, равную разности энергий второго и первого квантовых уровней.

$$\Delta E = E_2 - E_1,$$

$$\Delta E = \frac{E_1}{4} - E_1 = -\frac{3}{4}E_1 = +10, 2 \text{ (3B)}.$$


Решение (продолжение).

При столкновении бомбардирующий электрон не может передать энергию, большую, чем кинетическая энергия этого электрона, поэтому.

$$E_{\min} = \Delta E = -\frac{3}{4}E_1 = +10, 2$$
 (3B).

В то же время электрон атома не должен получить энергию, достаточную для перехода на уровень номер 3.

$$\Delta E < \frac{E_1}{9} - E_1 = -\frac{8}{9}E_1 = +12,1$$
 (3B).

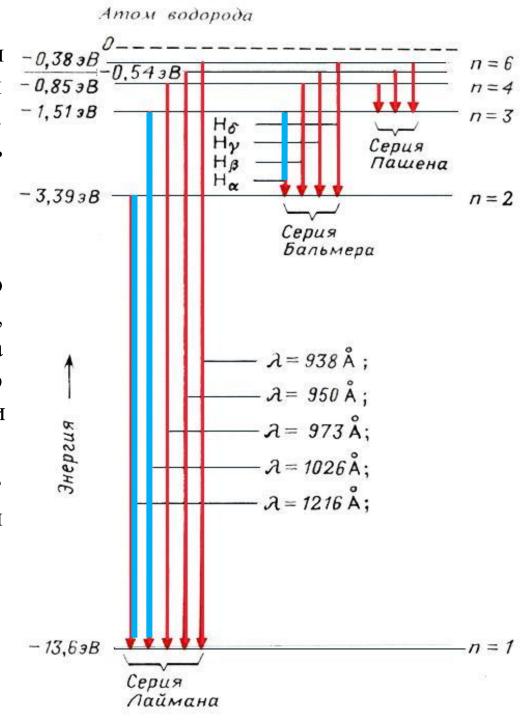
<u>45.</u> В каких пределах должна лежать энергия бомбардирующих электронов, чтобы при возбуждении атомов водорода ударами этих электронов спектр водорода имел только одну спектральную линию?

Решение (продолжение).

Таким образом, энергия бомбардирующего электрона должна быть меньше энергии, достаточную для перехода электрона в атоме на уровень номер 3.

$$E_{\text{max}} < \frac{E_1}{9} - E_1 = -\frac{8}{9}E_1 = +12,1$$
 (3B).

Ответ: энергия бомбардирующих электронов должна лежать в пределах

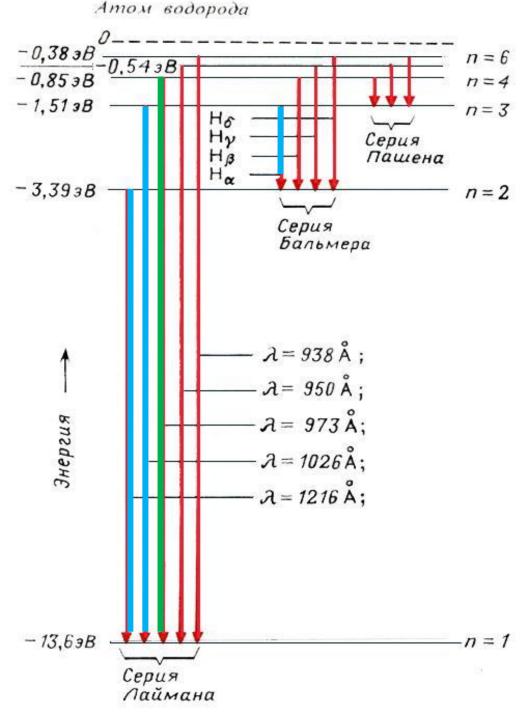

10,2
$${}_{9}B \le E < 12,1 {}_{9}B$$
.

Решение.

Для того, чтобы было возможно наблюдать три спектральные линии, энергия электрона в атоме должна возрасти на величину, равную разности энергий третьего и первого квантовых уровней.

В этом случае можно будет наблюдать линии с энергиями фотонов, равными

$$\begin{split} \Delta E_{13} &= E_3 - E_1, \\ \Delta E_{23} &= E_3 - E_2. \\ \Delta E_{12} &= E_2 - E_1, \end{split}$$

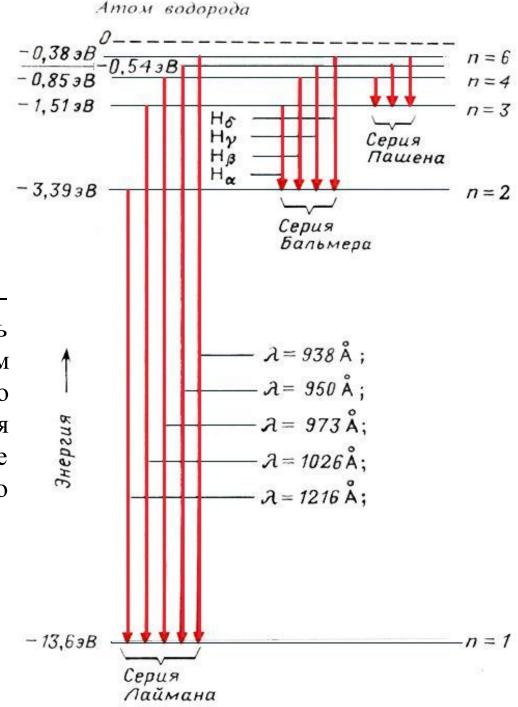

Атом водорода каких пределах должны волн *-0,38 зВ* ДЛИНЫ лежать монохроматического света, чтобы -0.853Bn = 6n=4-1,51 3B при возбуждении атомов водорода n = 3HS квантами этого света наблюдались Серия Пашена три спектральные линии? -3,393B n=2Решение (продолжение). Серия Бальмера Энергия фотонов не может быть меньше, чем $\Delta E_{13} = E_3 - E_1$. $\lambda = 938 \,\text{Å}$; фотонов должна Энергия быть A= 950 Å; меньше, чем Энергия A = 973 Å; $\Delta E_{14} = E_4 - E_1$. $\frac{hc}{\lambda_{\text{max}}} = \Delta E_{13} = E_3 - E_1 =$ A = 1026 A: A = 1216 A; $=\frac{E_1}{9}-E_1=-\frac{8}{9}E_1.$ $\lambda_{\max}=-\frac{9}{8}\frac{hc}{E_1}=$ 102,6 (HM). -13,69BСерия Лаймана

<u> Решение (продолжение).</u>

$$\begin{split} \frac{hc}{\lambda_{\min}} &= \Delta E_{14} = E_4 - E_1 = \\ &= \frac{E_1}{16} - E_1 = -\frac{15}{16} E_1. \\ \lambda_{\min} &= -\frac{16}{15} \frac{hc}{E_1} = 97,3 \ (\text{H.M.}). \end{split}$$

Особо отметим, что поглощаться будут только фотоны с энергией, равной энергии перехода.

Ombem: $97,3 \le \lambda \le 102,6$ HM.



A??. Какие спектральные линии появятся в видимой части спектра при возбуждении атомов водорода электронами с энергией 13 эВ?

λ, -?

столкновении бомбардирующий электрон не может передать большую, энергию, чем энергия кинетическая ЭТОГО электрона, ПОЭТОМУ энергия быть перехода должна меньше бомбардирующего энергии электрона.

$$\Delta E < E_{el} = 13 \ (3B).$$

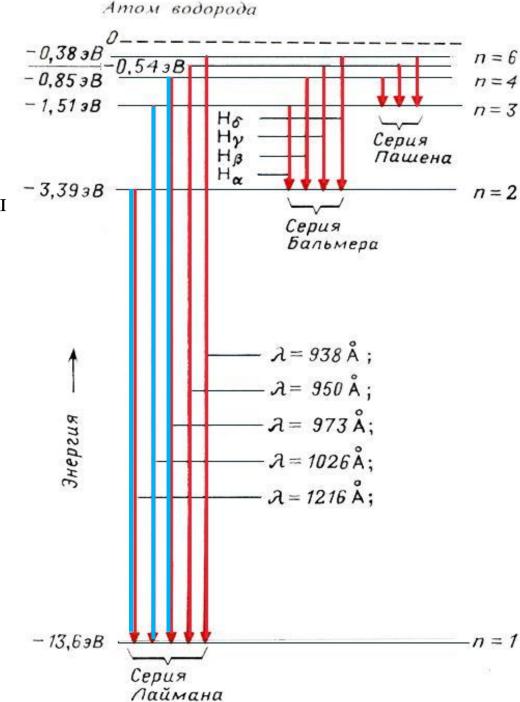
4??. Какие спектральные линии появятся в видимой части спектра при возбуждении атомов водорода электронами с энергией 13 эВ?

Решение (продолжение).

Проверим, какие переходы удовлетворяют этому условию.

$$\Delta E_{12} = E_2 - E_1 = \frac{E_1}{4} - E_1 =$$

$$= -\frac{3}{4}E_1 = +10, 2 \quad (\ni B).$$


$$\Delta E_{13} = E_3 - E_1 = \frac{E_1}{9} - E_1 =$$

$$= -\frac{8}{5}E_1 = +12, 1 \quad (\ni B).$$

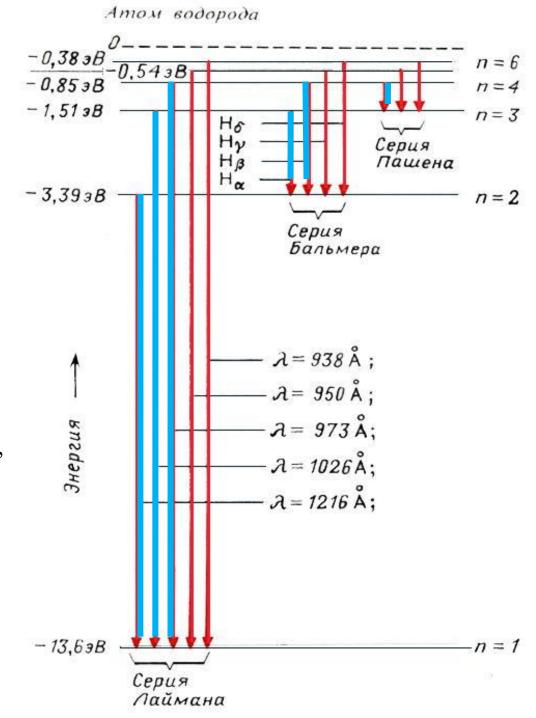
$$= -\frac{8}{9}E_{1} = +12,1 \ (9B).$$

$$\Delta E_{14} = E_{4} - E_{1} = \frac{E_{1}}{16} - E_{1} =$$

$$= -\frac{15}{16}E_{1} = +12,75 \ (9B).$$

4??. Какие спектральные линии появятся в видимой части спектра при возбуждении атомов водорода электронами с энергией 13 эВ?

Решение (продолжение).


$$\Delta E_{15} = E_5 - E_1 = \frac{E_1}{25} - E_1 =$$

$$= -\frac{24}{25}E_1 = +13,06 \ (3B).$$

Энергия этого перехода больше 13 эВ, следовательно, такой переход в данном случае невозможен.

Определим спектральные линии, которые можно наблюдать в этом случае (см. рисунок).

Всего таких линий шесть.

