

«ИССЛЕДОВАНИЕ ВЛИЯНИЯ ПРОЦЕССА ВЕРМИКОМПОСТИРОВАНИЯ ЖИРОСОДЕРЖАЩИХ ОТХОДОВ И ИЗБЫТОЧНОГО ИЛА НА ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА ОБРАЗЦОВ ПОЧВЫ С ЦЕЛЬЮ ПОЛУЧЕНИЯ БИОУДОБРЕНИЯ»

Научный руководитель: кандидат химических наук, доцент Масютин Яков Андреевич Подготовили: Студенты 4 курса специальности «Химия» Бровцин Е.И. и Васильев Н.Е.

Введение

Одним из возможных способов обеспечения повторного использования промышленных отходов, является вермикомпостирование. Используя этот метод, предприятия смогут производить дополнительный продукт - биоудобрение, а также дополнительно смогут помочь улучшить экологическую обстановку.

Введение

Цель данной работы — исследование влияния процесса переработки жиросодержащих отходов и избыточного ила, образующихся в качестве отходов на агропромышленном предприятии Калининградской области, методом вермикомпостирования для получения биоудобрения.

Для достижения цели были поставлены следующие задачи:

- 1. Подбор оптимальных условий для процесса аэрации;
- 2. Проведение процесса вермикомпостирования;
- 3. Исследование физико-химических свойств образцов почвы после процесса вермикомпостирования;
- 4. Оценка соответствия полученного биоудобрения основным нормативным показателям.

Объекты изучения

Рисунок 1 - Образец жиросодержащих отходов

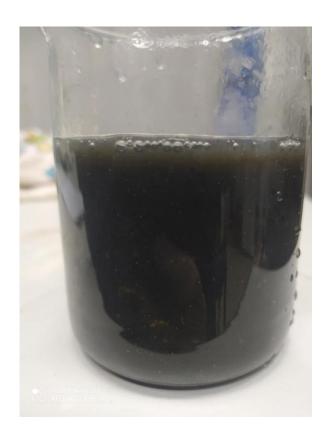


Рисунок 2 - Образец избыточного активного ила

Подбор оптимального соотношения компонентов и температуры обработки производственных шламов при аэрировании в смеси с активным илом и опилками

Особенность данных отходов в том, что в них содержатся вредные для червей газы, например аммиак. Для их утилизации образцы шламов подверглись аэрированию воздухом в смеси с активным илом и опилками в качестве наполнителя.

Рисунок 3 - Компрессор JUN-AIR 6-15

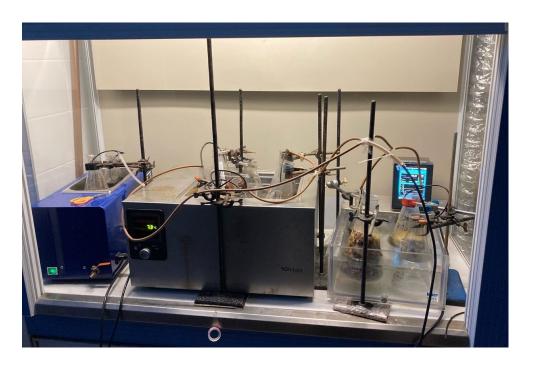


Рисунок 4 - Установка для аэрации

Подбор оптимального соотношения компонентов и температуры обработки производственных шламов при аэрировании в смеси с активным илом и опилками

Таблица 1 – Результаты аэрации

Nº	Соотношение	Температура	Массовая доля аммонийного азота, % на продукт с исходной влажностью		
			Начало эксперимента	1 неделя	2 неделя
	1:1	25	$0,143 \pm 0,004$	0,056 ± 0,007	0,011 ± 0,003
	1:1	40	$0,143 \pm 0,004$	0,054 ± 0,005	0,009 ± 0,002
	1:1	60	$0,143 \pm 0,004$	0,063 ± 0,005	0,012 ± 0,003
Ил/опили	1:2	25	0,125 ± 0,006	0,043 ± 0,006	0,005 ± 0,001
Ил/опилк	1:2	40	0,125 ± 0,006	0,039 ± 0,007	0,003 ± 0,001
И	1:2	60	0,125 ± 0,006	0,051 ± 0,004	0,006 ± 0,002
	2:1	25	$0,170 \pm 0,005$	0,067 ± 0,005	0,021 ± 0,003
	2:1	40	$0,170 \pm 0,005$	0,065 ± 0,006	0,018 ± 0,003
	2:1	60	0,170 ± 0,005	0,074 ± 0,005	0,021 ± 0,004
8	1:1:1	25	$0,149 \pm 0,004$	0,043 ± 0,003	0,010 ± 0,002
	1:1:1	40	$0,149 \pm 0,004$	0,039 ± 0,004	0,009 ± 0,002
	1:1:1	60	$0,149 \pm 0,004$	0,045 ± 0,006	0,012 ± 0,003
Жир/опи	1:2:1	25	0,116 ± 0,003	0,029 ± 0,006	0,005 ± 0,002
лки/акти	1:2:1	40	0,116 ± 0,003	0,027 ± 0,005	0,003 ± 0,001
вный ил	1:2:1	60	0,116 ± 0,003	0,036 ± 0,004	0,006 ± 0,002
	2:1:2	25	0,175 ± 0,007	0,061 ± 0,007	0,013 ± 0,003
	2:1:2	40	0,175 ± 0,007	0,057 ± 0,006	0,012 ± 0,003
	2:1:2	60	0,175 ± 0,007	0,065 ± 0,006	0,015 ± 0,004

Подбор оптимального соотношения компонентов и температуры обработки производственных шламов при аэрировании в смеси с активным илом и опилками

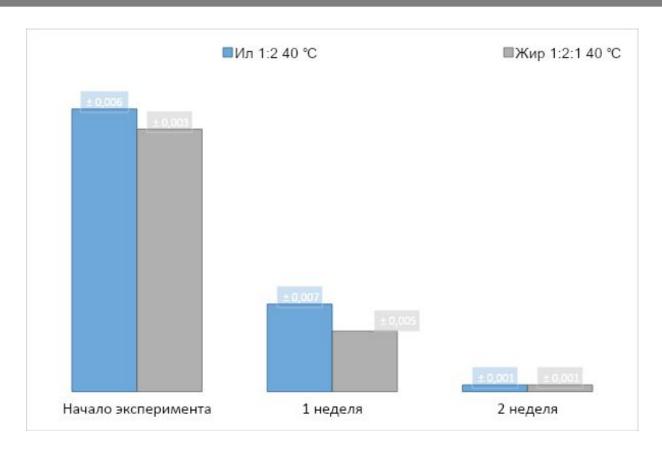


Рисунок 5 – Динамика изменения концентрации аммонийного азота

Процедура вермикомпостирования

Избыточный ил и образец жиросодержащих отходов, смешали с обедненной почвой в соотношении 1:1, субстрат и 35-40 червей. Смесь поместили в специальную емкость (пластиковая бутылка на 6 л).

Таблица 2 - Контролируемые параметры процесса вермикомпостирования

Время	Температура	Влажность среды,	Количество червей в
компостирования,	среды, °C	%	перерасчете на 1 м ² ,
сутки			тыс. особей
21	16-25	65-75	3

Материалы исследования

- 1) образец № 1 плодородная почва (Грунт для цветущих горшечных культур Morris Green);
- 2) образец № 2 почва после вермикомпостирования с избыточным илом;
- 3) образец № 3 почва после вермикомпостирования с жиросодержащими отходами;
- 4) образец № 4 неплодородный грунт (почва на которой выращивался рапс).

Рисунок 6 - Образец №1.

Рисунок 7 - Образец №2.

Рисунок 8 - Образец №3.

Рисунок 9 - Образец №4.

	Наименование показателя	Норма по ГОСТ Р 56004- 2014	Данные исследования			
№			Плодородная почва (образец №1)	Неплодородный грунт + избыточный активный ил после вермикомпостирования (образец №2)	Неплодородный грунт + жиросодержащие отходы после вермикомпостирования (образец №3)	Неплодородный грунт (образец №4)
1	Размер частиц биоудобрения, %, (не более 5,00 мм)	100,00	100,00	100,00	100,00	100,00
2	рН водной вытяжки	6,00-8,00	$6,34 \pm 0,01$	$6,16 \pm 0,02$	$6,30 \pm 0,02$	$5,38 \pm 0.01$
3	рН солевой вытяжки	6,00-8,00	$6,80 \pm 0,01$	$6,58 \pm 0,02$	$6,54 \pm 0,02$	$5,74 \pm 0,01$
4	Массовая доля сухого вещества, %, не менее	50,00	$56,43 \pm 0,30$	$51,25 \pm 0,40$	$50,96 \pm 0,60$	$77,10 \pm 0,80$
5	Массовая доля органического вещества в пересчете на углерод, % на сухой продукт, не менее	30	$43,84 \pm 0,10$	$35,18 \pm 0,10$	$30,71 \pm 0,10$	$6,74 \pm 0,10$
6	Массовая доля общего азота, %, не менее	1,60	$2,37 \pm 0,01$	$1,78 \pm 0,02$	$1,69 \pm 0,01$	$0,28 \pm 0,01$
7	Массовая доля фосфорного ангидрида (P2O5), %, не менее	1,20	$2,26 \pm 0,02$	$1,34 \pm 0,01$	$1,26 \pm 0,01$	$1,10 \pm 0,01$

Методы исследований

Показатель C:N демонстрирует отношение углерода к азоту. Оптимальное соотношение C:N 25:1 – 30:1. При отклонении от оптимального соотношения, уменьшается скорость процесса вермикомпостирования.

Таблица 3 - Результаты расчета соотношения C:N в исследуемых образцах почвы, рассчитанные согласно ГОСТ 27980-88.

No	C:N
1	32:1
2	28:1
3	29:1
4	23:1

Заключение

Подводя итог проведенной исследовательской работы необходимо выделить следующие пункты:

- 1. Подобраны оптимальные условия для процесса аэрации (Температура = 40 °C, соотношение шлам/опилки/активный ил = 1:2:1 для жиросодержащих отходов и шлам/опилки = 1:2 для избыточного ила).
- 2. В течение 3 недель проводился процесс вермикомпостирования, при поддержании основных параметров (Температура: 16-25 °C, влажность: 65-75%).
- 3. Проведен анализ физико-химических свойств образцов почв, полученных после вермикомпостирования.
- 4. Произведена оценка соответствия свойств, полученных образцов почв требованиям, предъявляемым к биоудобрениям по результатам которой было установлено, что важнейшие показатели полученных биоудобрений соответствуют требованиям согласно ГОСТ Р 56004-2014.

Спасибо за внимание!