

Магнитный изотопный эффект

выражается в зависимости скорости химической реакции (или вероятности рождения молекулы)

от ядерного спина, его проекции, магнитного момента и энергии электро-ядерного (*сверхтонкого Кулоновского*) взаимодействия.

Step E.N.// Chem. Phys. Lett. 1991. 186. P. 405.

Распространенность изотопов

биологически активных двухвалентных металлов в

природе					
Нукли Д	Распространеннос ть в природе, %	Ядерный спин	Ядерный магнитный момент, µ		
²⁴ Mg	78,99	0			
²⁵ Mg	10,00	+5/2	-0,85545		
²⁶ Mg	11,01	0			
⁶⁴ Zn	48,6	0			
⁶⁶ Zn	27,9	0			
⁶⁷ Zn	4,1	-5/2	+0,87515		
⁶⁸ Zn	18,8	0			
⁷⁰ Zn	0,6	0			
⁴⁰ Ca	96.94	0			
⁴³ Ca	1.317	-7/2	+0,87515		

Нанотопология активного сайта

Скорость образования АТФ митохондрией (A) и креатинкиназой (B) как функция изотопа Mg

МИТОХОНДРИЯ, ПОДВЕРГНУТАЯ СЕЛЕКТИВНОЙ БЛОКАДЕ ОКИСЛИТЕЛЬНОГО ФОСФОРИЛИРОВАНИЯ С ПОМОЩЬЮ 1-

Формирование ионрадикальных пар (Синглет-триплетный каналы фосфорилирования)

Магнитный изотопный эффект ²⁵Mg²⁺ в регуляции митохондриального синтеза АТФ, осуществляемого креатинкиназой

Ион-радикальный механизм глицерофосфаткиназной $\begin{bmatrix} -0 & -0 & Mg^{2+} & 0^{-} \\ HO_2C - CHOH - CH_2O & -P & -O - P & -O - AMP \\ \downarrow A & 0 & 0 \end{bmatrix}$ реакции $\begin{bmatrix} -O & -O & Mg^{+} & O^{-} \\ -CH_{2}O & -P & O & -P & - \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{S} \begin{bmatrix} 25 Mg \\ Mg & -CH_{2}O & -P & O & -P & - \\ -CH_{2}O & -P & O & -P & - \\ 0 & 0 & 0 \end{bmatrix}^{T}$ $\begin{bmatrix} -O & Mg^{+} & O^{-} \\ N & & | \\ -CH_{2}O - P & -O - P \\ | & | \\ O & O \end{bmatrix}^{S}$ $\begin{bmatrix} -\mathbf{O}^{-}\mathbf{O} & \mathbf{\dot{M}g}^{+} & \mathbf{O}^{-} \\ \mathbf{\dot{M}g}^{-} & \mathbf{O}^{-} \\ -\mathbf{CH}_{2}\mathbf{O}^{-}\mathbf{P}^{-} & \mathbf{O}^{-}\mathbf{P}^{-} \\ \mathbf{\dot{H}} \\ \mathbf{O}^{+} & \mathbf{O} \end{bmatrix}^{T}$ $\begin{bmatrix} -CH_2\dot{O} & \dot{M}_g^+ \end{bmatrix}^{S} + ATP$ $\begin{bmatrix} -CH_2 \dot{O} & \dot{M}_g^{\dagger} \end{bmatrix}^{\mathsf{T}} + ATP$

Схема реакции фосфорилирования с помощью АТФ синтазы

НАНОКАТИОНИ

ТВрбны переносить катионы металлов и «отдавать» их в условиях избытка положительных зарядов в окружающей среде (метаболический ацидоз)

Структура РМС-16 (Пат. ЕР 1992627А1, 2007)

Время,

Ч

ФАРМАКОКИНЕТИКА [Mg]PMC16 (КРЫСЫ)

Однократная внутривенная инъекция 20мг/кг (M ± SEM, n = 6)

мониторинг в течение 24 ч

$T_{1/2} = 9.0 $ ч $T_{max} = 2.5 $ ч	С ₀ = 62 мкг/мл С _{max} = 260 ± 83 нг/мл		
Cl = 32 ± 4 мл/мин/кг k = 0.685	$V_P = 16.2 \text{ мл/кг}$ $V_C = 12.4 \text{ мл}$ $V_1 = 0.08 \text{ мл}$		
Почечная экскреция:	$28 \pm \mathbf{4.3\%}$		
Печеночная экскреция: (метаболизм)	$16 \pm 4.0\%$		
Связывание с белками плазмы: 1.2 ± 0.3%			
ВКЛЮЧЕНИЕ КЛЕТКАМИ КРОВИ			
Лимфоциты:	$28.6 \pm \mathbf{5.5\%}$		
Эритроциты:	8.0±3.2%		
ТКАНЕСПЕЦИФИЧНОЕ НАКОПЛЕНИЕ			
Миокард:	$18.4\pm3.40\%$		
Мозг:	$0.6\pm0.02\%$		
ВЫВЕДЕНИЕ МЕТАБОЛИТО	B PMC16		
С МОЧОЙ (258±4.0 мкг/мл)			
Деаланилированные производн	ые: 56.4 ± 8.7%		
Деацетилированные производн	ые: 27.0 ± 6.1%		
Циклогексил-С ₆₀ :	$16.2\pm3.3\%$		
Содержание РМС16 в моче:	462 ± 11 мкт/мл		
Солержание Ско в моче:	2.9 ± 0.1 мкг/мл 3		

КАТАЛИТИЧЕСКИЙ САЙТ ФЕРМЕНТА

МИКРОФОТОГРАФИИ ПЕРИНУКЛЕАРНОЙ ОБЛАСТИ МИОКАРДИОЦИТОВ КРЫСЫ

(ПРОСВЕЧИВАЮШАЯ ЭЛЕКТРОННАЯ МИКРОСКОПИЯ)

A

в

Б

Г

А, В – эффект предотвращения гипоксии РМС16 $(30 \text{ мг/кг} [^{25}\text{Mg}]\text{РМС16}, \text{в/в} \rightarrow 12 \text{ ч-}20 \text{ мг/кг}$ МНА, в/в $\rightarrow 12 \text{ ч} \rightarrow \text{тест})$

Б – МНА-модель гипоксии (20 мг/кг МНА 12 ч → тест)

Г – Контроль (ткань здоровой интактной крысы)

ДИСПЛАЗИЯ МИТОХОНДРИЙ МИОКАРДИОЦИТОВ КРОЛИКА (ИНДУЦИРОВАНА ДОКСОРУБИЦИНОМ)

(A)Митохондрия (M):

0.5 DL50 DXR, 12 часов

В

(B) Митохондрия (M):

0.2 DL₅₀ PMC16, 6 часов → 0.5 DL₅₀ DXR, 12 часов

ДИСПЛАЗИЯ ЯДРА МИОКАРДИОЦИТОВ КРОЛИКА (ИНДУЦИРОВАНА ДОКСОРУБИЦИНОМ)

Α

(A) Ядро (N):

0.5 DL50 DXR, 12 часов

В

(B) Ядро (N):

0.2 DL₅₀ PMC16, 6 часов → 0.5 DL₅₀ DXR, 12 часов

Перспективы применения в нейробиологии «умных» нанокатионитов на основе порфириновых аддуктов фуллерена С60

Магнитные изотопные эффекты в биологии. Концепция спин-селективной биохимии (Академик РАН А.Л. Бучаченко)

Синергизм выхода АТФ, потребления кислорода и высвобождения Mg²⁺ РМС16 в сердечной мышце крыс

Слева - Изотоп магния с нулевым спином (²⁴Mg)

Справа – Магнитный изотоп (²⁵Mg)

(РМС16) (Проф. Д.А.Кузнецов), 6 международных патентов

Порфиллерен-МС16

Применение: профилактика и терапия острой и хронической ишемии головного мозга (Порфириновые рецепторы в большом количестве содержатся в митохондриях нейронов).

ВОЗМОЖНЫЕ БИОЛОГИЧЕСКИЕ ЭФФЕКТЫ [Mg]PMC16, ПРЕДСКАЗАННЫЕ НА ОСНОВЕ ИХ СТРУКТУРЫ

ИЗВЕСТНОЕ СВОЙСТВО ДОМЕНА		ОЖИДАЕМОЕ СВОЙСТВО [Mg]PMC16, ЗАВИСЯЩЕЕ ОТ ДОМЕНА		
		ФУЛЛЕРЕН – С ₆₀	ПОРФИРИН	
ГИДРОФОБНОСТЬ, ЛИПОФИЛЬНОСТЬ		МЕМБРАНОТРОПНОСТЬ		
ГИДРОФИЛЬНОСТЬ			ВЫСОКАЯ ДЛЯ АДДУКТОВ С ₆₀ ВОДОРАСТВОРИМОСТЬ	
СРОДСТВО К СИГНАЛЬНЫМ БЕЛКАМ МЕМБРАН НЕКОТОРЫХ КЛЕТОК			МЕМБРАНОТРОПНОСТЬ, ТКАНЕСПЕЦИФИЧНОСТЬ, ВОЗМОЖНОСТЬ АДРЕСНОЙ ДОСТАВКИ ИЗОТОПОВ Mg	
DL ₅₀ = 2465 мг/кг, в/в, крысы		ОТНОСИТЕЛЬНАЯ БЕЗОПАСНОСТЬ ФАРМ. ПРИМЕНЕНИЯ		
ОТСУСТВИЕ ВЫРАЖЕННОЙ ОСТРОЙ ТОКСИЧНОСТИ			БЕЗОПАСНОСТЬ ФАРМ. ПРИМЕНЕНИЯ	
МЕТАБОЛИЗМ In Vivo	ПОЛНОЕ ОТСУТСТВИЕ	ВЫСОКИЕ ПОКАЗАТЕЛИ КЛИРЕНСА, ЗАЩИТА (ЭКРАНИРОВАНИЕ) ПОРФИРИНОВОГО ДОМЕНА И ЗАМЕДЛЕНИЕ БИОТРАНСФОРМАЦИИ НАНОЧАСТИЦЫ		
	ПРЕДШЕСТВЕННИК В БИОСИНТЕЗЕ ГЕМА		БЕЗОПАСНОСТЬ ФАРМ. ПРИМЕНЕНИЯ, ВОВЛЕЧЕНИЕ В ЕСТЕСТВЕННЫЙ МЕТАБОЛИЗМ	
КАТИОНООБМЕННЫЕ СВОЙСТВА			АЦИДОЗ - ИНДУЦИРУЕМОЕ ВЫСВОБОЖДЕНИЕ КАТИОНОВ ²⁵ Mg ²⁺ ПРИ ТКАНЕВЫХ ГИПОКСИЯХ («УМНАЯ» НАНОЧАСТИЦА)	

Y, [(нмоль АТФ/мин)/мг КК]х10⁻³ Λ [IAMATI/MIALI V_[32D] Δ T Δ T Δ /MT (K) V10⁻³

Сп-индуцированный синтез АТФ креатинкиназой

21

Справли и Санарованный синтез АТФ пируваткиназой

22

Синтез АТР креатинкиназой зависит от изотопии Са и Zn

• с немагнитными изотопами 40 Ca (1) и 64 Zn • с магнитными изотопами 43 Ca (2) и 67 Zn

Уровень предельных величин замещения магния экзогенными ионами Ca²⁺ и Zn²⁺ в молекулах креатинкиназы и ДНК-полимеразы β

Предпосылки применения МИЭ

МИЭ в управлении металл – зависимым ферментативным катализом

(А.Л. Бучаченко и соавт., 2005-2013; Sarkar et al., 2007-2011; Amirshahi et al. 2008-2011)

> Фармакологическое применение МИЭ-⁴³Са²⁺

ДНК-полимеразы β : легитимные мишени для действия цитостатиков

(*М.А.* Орлова и С.А. Румянцев 2012-2013; *А.Л.* Бучаченко и соавт., 2013)

Изоэлектрическое фокусирование продуктов фракционирования ядер клеток HL-60 и миелоцитов/миелобластов здоровых доноров pl 2 3 4 5 6 7 8 9 10 1 10.0 **ΝΑρο/β** 3.0

- 1 <u>маркер,</u> кислый гликопротеин плазматическои мемораны клеток неца,
- 2 <u>маркер.</u> гистон Н1А клеток HeLa,
- 3 бета подобная ДНК-полимераза из хроматина ядер клеток HL-60,

4, 6, 7 – суммарный белок хроматина ядер миелоцитов/промиелоцитов/миелобластов здоровых доноров,

- 5 суммарный белок ядер клеток HL-60,
- 8, 9 суммарный белок хроматина ядер клеток HL-60,
- 10 суммарный белок нуклеоплазмы ядер клеток HL-60.

Очистка и характеристика *ДНК-полимеразы* β из частично фракционированного *хроматина клеток HL-60*

Профиль разделения белков хроматина из клеток HL-60 на колонке TOYOPEARL HW 55F и каталитической активности выделенной бета-подобной ДНК-полимеразы

А и Б - ИЭФ очищенной бета-подобной ДНК-полимеразы и коммерческих маркеров.

B - SDS – PAGE анализ: 1 – коммерческие маркеры, 2 – 5 – очищенный фермент (5,0, 1,0, 0,5 и 0,1 мкг/гель).

Г - Электрофорез ДНК в агарозном геле:

1, 3 – коммерческие маркеры однотяжевой

ДНК, 2 – фрагменты ДНК,

Идентификационные критерии ДНК-полимераз семейства β

- Молекулярная масса <110 кДа</p>
- Низкая процессивность фермента
- Низкая продуктивность (*n*<300)</p>
- Мд-зависимый фермент
- Мономер
- Отсутствие 3',5'-экзонуклеазной активности
- Локализация в хроматине
- Резистентность к таким ингибиторам, как Афидиколин
 - и *N*-этил-меламид
- ИЭТ 8.2 8.6
- Активация фермента при высоких концентрациях KCI (200mM)

Каталитическая активность бета-подобной ДНК-полимеразы, выделенной из хроматина клеток HL-60: воздействие ингибиторов и KCI

	Удельная каталитическая активность		
ЭФФЕКТОР	ДНК-полимеразы β,		
	(имп/мин [³ Н]ДНК)/мг белка		
	$n = 6 (\mathbf{M} \pm \mathbf{m})$		
Афидиколин, 5.0 мкг/мл	30 789 ± 398		
<i>N</i> -этилмеламид, 0.5 mM	$27\ 632 \pm 437$		
ddTTФ, 2.5 мкМ	$1\ 370 \pm 186$		
Трипсин, 20 мкг/мл	207 ± 16		
KCl, 200 mM	74 613 ± 441		
Без добавления реагентов	$29\ 838 \pm 322$		
(оптимальная инкубационная среда)			

^{[Ca²⁺], mM Зависимость скорости синтеза ДНК ДНК-полимеразой β из клеток HL-60 от концентраций ионов ⁴⁰Ca²⁺ и ⁴³Ca²⁺}

А – (имп/мин [H³]ДНК)/мг фермента

Механизм нарушения синтеза ДНК

В отличии от киназ, в случае ДНК-полимераз донором электрона выступает кислород рибозы, а не фосфатной группы.

Под воздействием магнитного момента ядра изотопа ⁴³Ca²⁺, находящегося в каталитическом сайте фермента, образуется ион-радикальная пара.

Существуют 3 возможных варианта разрыва связи после присоединения нуклеотида к растущей цепи ДНК, лишь один из которых (-) приводит к удлинению праймера.

В случае ион-радикальной пары этот путь подавляется, что и приводит к уменьшению активности ДНК-полимеразы.

Влияние МИЭ - Me²⁺ на кинетику катализа, обеспечиваемого ДНК-полимеразой β из клеток HL-60 ([Me²⁺]_{opt}=20 mM)

ВОЗДЕЙСТВИЕ ИЗОТОПИИ ИНКУБАЦИОННОЙ СМЕСИ ДНК-ПОЛИМЕРАЗЫ В НА ЛПИНУ СИНТЕЗИРОВАННЫХ ФРАГМЕНТОВ

Электрофорез в 2.0%-м геле агарозы 1 – ДНК-маркеры, 110 – 489 n; 2 - 2-20 мМ ⁴³CaCl₂, без Мg; 3 - 3-20 мМ ²⁵MgCl₂, без Са; 4 - 4-20 мМ ⁴⁰CaCl₂, без Мg; 5 - 5-20 мМ ²⁴MgCl₂, без Са;

Условия инкубации фермента оптимизированы: pH 8.0, + 37 °C, 20 мМ MeCl₂, 60 мин

ЗАВИСИМОСТЬ ОТНОСИТЕЛЬНОЙ КАТАЛИТИЧЕСКОЙ АКТИВНОСТИ И ПРОДУКТИВНОСТИ ДНК-ПОЛИМЕРАЗЫ ОТ ВЕЛИЧИНЫ ЗАМЕЩЕНИЯ МАГНИЯ ИЗОТОПАМИ КАЛЬЦИЯ ВО ВНУТРИФЕРМЕНТНОМ ПУЛЕ ДВУХВАЛЕНТНОГО МЕТАЛЛА

Доля кальция в пуле двухвалентног о металла	Относительная каталитическая активность ДНК-полимеразы бета		Максимальный размер синтезируемых фрагментов ДНК <i>, n</i>		
в ферменте	<mark>Замещение</mark> Mg/ ⁴⁰ Ca	<mark>Замещение</mark> Mg/ ⁴³ Ca	<mark>Замещение</mark> Mg/ ⁴⁰ Ca	<mark>Замещение</mark> Mg/ ⁴³ Ca	
0,1	~0,97	~0,91	~230	~200	
0,2	~0,95	~0,83	~225	~125	
0,3	~0,93	~0,62	~215	~100	
0,4	~0,91	~0,51	~210	~87	
0,5	~0,90	~0,39	~200	~35	

Влияние наночастиц РМС16, транспортирующих изотопы Mg и Ca, на выживаемость клеток (LC₅₀) HL-60 и

миелобластов здоровых доноров (p<0,01)

МАКСИМАЛЬНО ДОСТИЖИМЫЙ УРОВЕНЬ ЗАМЕЩЕНИЯ ЭНДОГЕННОГО Mg²⁺ КАЛЬЦИЕМ В ОЧИЩЕННОЙ ДНК-ПОЛИМЕРАЗЕ БЕТА ИЗ КЛЕТОК HL-60

А – Контроль *(нативный* фермент);

Б – Эксперимент (*Mg – Са замещение*)

20 mM CaCl₂/ 15 mM Трис-HCl (pH 8.0) / 1.5 mM ЭДТА/ +37°C/ 2ч

Кривые доза-эффект препаратов порфирин-фуллеренов (Ме₄[РМС16]) для клеток линии HL60 (миелобластный лейкоз)

 Цитотоксический эффект магнитных изотопов проявляется во всех исследованных концентрациях, начиная с минимальных. Это может говорить о высоком потенциальном противоопухолевом эффекте, однако требуются дополнительные эксперименты, направленные на выявление потенциальных механизмов действия, механизмов гибели клетки, взаимодействия с традиционными химиопрепаратами (возможно как усиление их действия, так и цитопротекторный эффект, в первую очередь в отношении здоровых клеток.

Наиболее классическая кривая дозо-зависимого эффекта в отношении бластных клеток отмечается у немагнитных изотопов магния и кальция, что совпадает с результатами более ранних экспериментов на клетках пациентов с ОЛЛ.

Распределение опухолевых клеток, окрашенных Аннексином-V/FITC и PI по флуоресценции после инкубации без PMC16(²⁵Mg) (а) и с PMC16(²⁵Mg) (б)

Результаты оценки индукции апоптоза

Распределение опухолевых клеток, окрашенных Annexin V/FITC/PI по флуоресценции после инкубации без препарата (а) и с препаратом (б)

Сравнение LC₅₀ препаратов РМС16(Со), PMC16(²⁴Mg), PMC16(²⁵Mg), p<0,01.

Медианы LC₅₀ препаратов

	Пациенты с ОЛЛ		Здоровые доноры		
					р по
Препараты	Число	M	Число	N.C.	Mann_
препараты	обследо-	медиана	обследо-	медиана	
	00011020	LC_{50}	000.1020	LC_{50}	Whitney
	ванных, п	50	ванных, п	50	
PMC16(Co)	8	0,44 мг/мл	5	2,74 мг/мл	<0,01
$PMC16(^{24}Mg)$	8	3,79 мг/мл	5	18,04 мг/мл	0,08
$PMC16(^{25}Mg)$	8	33,43 мг/мл	5	50,00 мг/мл	<0,05
· ·					

КОНЦЕПЦИЯ ЦИТОСТАТИЧЕСКОГО ПОТЕНЦИАЛА МИЭ – Ме²⁺ (А. Л. БУЧАЧЕНКО и соавт., 2006 – 2014)

Синергизм цитоплазматических и внутриядерных событий,

конвертирующих МИЭ ²⁵Мg и ⁴³Са в цитостатическое воздействие на клетку опухоли

Спасибо

Будьте здоровы и любимы...