Автор: Студент группы РНГМ-17-1с Лутфуллин Руслан Вадимович

Руководитель: Доцент Кафедры НГТ Турбаков Михаил Сергеевич

### Содержание

#### Список рисунков

- Рис. 1. Схема непоршневого вытеснения нефти водой из прямолинейного пласта стр 12
- Рис. 2. Схема элемента пласта при непоршневом вытеснении нефти водой стр 14
- Рис. 3. График зависимости f(s) от s стр 23
- Рис. 4. График зависимости f (s) от s стр 24
- Рис. 5. Схема элементарного объема радиального пласта стр 27

#### Введение

- Для учета обводненной продукции была создана модель непоршневого вытеснения нефти водой или модель двухфазной фильтрации.
- Эта модель, начало которой было положено американскими исследователями Бакли и Левереттом, послужила основой многих методик расчетов разработки нефтяных пластов с учетом совместной фильтрации нефти и воды.
- Учет непоршневого характера вытеснения нефти водой привел к необходимости использования относительных проницаемостей, которые, естественно, неодинаковы для различных пластов. Модель процесса непоршневого вытеснения нефти водой даже в сочетании с моделью однородного пласта позволяет рассчитывать данные разработки пласта в период добычи обводненной продукции. Тем не менее необходимо было как-то учитывать и реальную неоднородность пластов.

#### Введение

- По этой методике пласт состоит из набора отдельных слоев пропластков (трубок тока). Распределение абсолютной проницаемости устанавливают на основе определенного вероятностно-статистического закона. Чаще всего в качестве такого закона используют логарифмически нормальный закон. Приближенно принимают, что расход воды, поступающей в каждый отдельный слой, пропорционален абсолютной проницаемости этого слоя. Для расчета фильтрационного сопротивления в зоне совместного движения нефти и воды используют эмпирические зависимости, полученные на основе аппроксимации относительных проницаемостей.
- Определять добычу обводненной продукции можно также на основе сочетания модели поршневого вытеснения нефти водой с моделью слоисто-неоднородного пласта.

#### Цель и задачи

#### Цель:

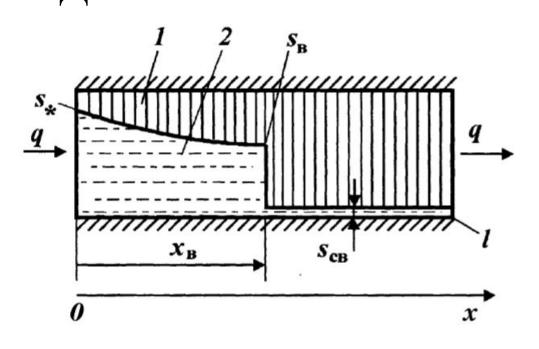
• Определить алгоритм действий для разработки однородного пласта на основе модели непоршневого вытеснения нефти водой.

#### Задачи:

- Изучить основные показатели разработки
- Рассмотреть непоршневую модель вытеснения водой
- Расчет показателей разработки однородного пласта на основе модели непоршневого вытеснения нефти водой

- Коэффициент вытеснения нефти водой  $\mathfrak{g}_2$  при разработке нефтяных месторождений с применением заводнения называется отношение извлеченной из пласта нефти к ее запасам, первоначально находившимся в части пласта, подверженной воздействию заводнением.
- Коэффициент охвата пласта воздействием  $\eta_2$  называется отношение запасов нефти первоначально находившихся в части пласта, подверженной воздействию заводнением, к геологическим запасам нефти в пласте.

Коэффициент вытеснения в процессе разработки месторождения зависит от следующих факторов:


- Минералогического состава и литологической микроструктуры пород коллекторов нефти и, как следствие этих факторов, глинистости пород, распределения пор по размерам, уровня абсолютной проницаемости, относительных проницаемостей, параметров микротрещиноватости пород;
- Отношения вязкости нефти к вязкости воды, вытесняющей нефть;
- Структурно-механических (неньютоновских) свойств нефти и их зависимостей от температурного режима пластов;
- Смачиваемости пород водой и характера проявления капиллярных сил в породах;
- Скорости вытеснения нефти водой.

Коэффициент охвата пластов воздействием при заводнении зависти главным образом от следующих факторов:

- Физических свойств и геологической неоднородности разрабатываемого пласта в целом:
- Параметров системы разработки месторождения, т.е. расположения скважин в пласте, расстояний между добывающими, а так же между добывающими и нагнетательными скважинами, отношения числа нагнетательных к числу добывающих скважин;
- Использование наклонно направленных скважин с разветвленными стволами;
- Давления на забоях нагнетательных и добывающих скважин;
- Применения способов и технических средств эксплуатации скважин;
- Применения методов управления процессом разработки месторождения путем частичного изменения системы разработки или без изменения системы разработки.

### 2. Непоршневая модель вытеснения нефти водой

### 2. Непоршневая модель вытеснения нефти водой



Непоршневое вытеснение нефти - это вытеснение, при котором за его фронтом движутся вытесняющий и вытесняемый флюиды, т.е. за фронтом вытеснения происходит многофазная фильтрация.

Рис. 1. Схема непоршневого вытеснения нефти водой из прямолинейного пласта:

1 – нефть; 2 – вода.

Рассматривая двухфазную фильтрацию (непоршневое вытеснение нефти водой) в прямолинейном пласте, выделим элемент длинной  $\Delta x$ , высотой h и шириной b в направлении, перпендикулярном к плоскости. В общем случае слева в элемент пласта поступают, а справа вытекает нефть и вода. При этом расход воды слева равен bhvв, а справа —  $bh(\partial vB + \partial VB/X \Delta X)$ .

Количество накопленной воды в элементе пласта составляет — bhm  $S/t \Delta X$  (v-скорость фильтрации воды; s- водонасыщенность пласта; t — время).

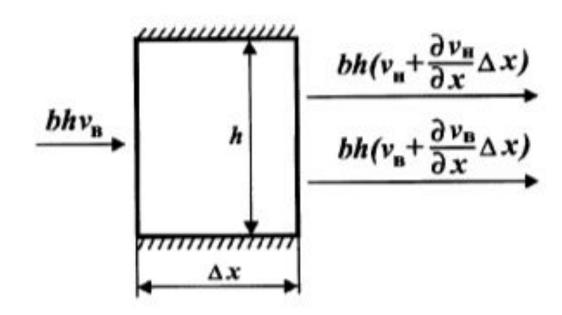



Рис. 2. Схема элемента пласта при непоршневом вытеснении нефти водой

Согласно закону сохранения вещества разность между скоростями входящей в элемент пласта воды и выходящей из него равна скорости накопления воды в элементе пласта. Выражая сказанное в математической формуле получаем

$$-bh\left(v_{B}\frac{\partial V_{B}}{\partial x}\Delta x\right) + bhv_{B} = bhm\frac{\partial s}{\partial t}\Delta x.$$

После сокращения соответствующих членов при устремлении  $\Delta x \rightarrow$ 0 имеем  $\frac{\partial V_B}{\partial x} + m \frac{\partial S}{\partial t} = 0.$ 

Поскольку в пористой среде содержатся только нефть и вода, то насыщенность пористой среды нефтью sn=1-s.

Рассматривая аналогично предыдущему скорости проникновения нефти в элемент пласта и выхода из него, получаем

$$\frac{\partial V_{BH}}{\partial x} - m \frac{\partial S}{\partial t} = 0.$$

Складывая уравнения, имеем

$$\frac{\partial}{\partial x}(V_{H}+V_{B})=0; \quad V_{H}+V_{B}=V(t).$$

Таким образом, суммарная скорость фильтрации нефти и воды не изменяется по координате х, что и следовало ожидать т.к. нефть и воду принимают за несжимаемые жидкости.

Следовательно, режим пласта жесткий водонапорный.

Скорости фильтрации воды и нефти подчиняются обобщенному закону Дарси, так что

$$V_{B} = -\frac{kk_{B}(s)}{\mu_{B}} \frac{\partial p}{\partial x}; \quad V_{H} = -\frac{kk_{H}(s)}{\mu_{H}} \frac{\partial p}{\partial x},$$

Где  $k_B$  и  $k_H$ ,  $\mu_B$  и  $\mu_H$  — относительные проницаемости зависящие от водонасыщенности s и вязкости воды и нефти.

Рассмотрим функцию f(s), называемую функцией Бакли-Леверетта. При этом

$$f(s) = \frac{V_B}{V_B + V_H} = \frac{K_B(s)}{K_B(s) + \frac{\mu_B}{\mu_H} K_H(s)}$$
, ИЛИ  $f(s) = V_B / V(t)$ .

После подстановки получим одно дифференциальное уравнение первого порядка для определения s, т.е.

$$v(t)f'(s)\frac{\partial s}{\partial x} + m\frac{\partial s}{\partial t} = 0.$$

По мере вытеснения нефти водой из прямолинейного пласта фронт вытесняющей нефть воды продвигается к концу пласта и водонасыщенность в каждом сечении заводненной области непрерывно увеличивается. Процесс вытеснения нефти водой из прямолинейного пласта можно представить и иным образом, следя за изменением по пласту некоторой водонасыщенности. Для указанного s=const можно принять

$$ds = \frac{\partial s}{\partial x} dx + \frac{\partial s}{\partial t} dt = 0,$$
 или  $\frac{\partial s}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial s}{\partial t} = 0.$ 

Сравним данные выражения. Они будут идентичными если положить

$$\frac{\partial x}{\partial t} = \frac{f'(s)v(t)}{m}$$

Умножим и разделим данное выражение на bh и проинтегрируем. Получим

bhmx = 
$$f'(s)Q_{B3}(t)$$
;  $Q_{B3}(t) = \int_{0}^{t} bhv(t)dt$ .

Обозначим

$$\xi = bhmx/Q_{B3}(t),$$
 тогда 
$$\xi = f'(s).$$

Задавая s в формуле, можно определить расстояние от входа в пласт для данного значения водонасыщенности. Однако в период безводной эксплуатации закачиваемая вода ещё не достигает конца пласта. Чтобы установить положение фронта вытеснения нефти водой и водонасыщенность вытеснения, рассмотрим материальный баланс закачанной в пласт воды. Если к моменту времени t в пласт закачан объем воды, равный Qва(t), расстояния x=0 до фронта вытеснения составит хв, насыщенность пласта связанной водой S=Scb, то

$$Q_{B3}(t) = bhm \int_{0}^{x_{B}} s(x)dx - bhmx_{B}s_{CB}.$$

Используем следующие обозначения:

$$X = \frac{Q_{B3}}{bhm} \xi; \quad X_{B} = \frac{Q_{B3}}{bhm} \xi_{B};$$

$$dX = \frac{Q_{B3}}{bhm} d\xi.$$

Тогда подставляя, получаем

$$\int_{0}^{\xi_{B}} s(\xi) d\xi - s_{CB} \xi_{B} = 1$$

Поскольку  $\xi = f'(s)$ , то  $d\xi = f''(s)ds$ .

Следовательно

$$\int_{s}^{s} sf''(s)ds = 1 + s_{cB}f'(s_{B})$$

На рисунке 3 приведен график, построенный с учетом кривых относительных проницаемостей.

По кривой f(s) можно найти значение sв графическим путем.

В самом деле согласно рисунку 3,

$$f'(s_B) = tg\alpha = \frac{f(s_B)}{s_B - s_{cB}}$$

Проведя касательную к кривой f(s) из точки  $s=s_{cb}$ , по точке касания, определяем  $f(s_b)$  и  $s_b$ .

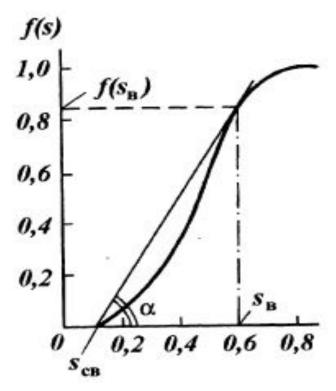



Рис. 3. График зависимости f(s) от s

Для того, чтобы найти распределение водонасыщенности по длине пласта, необходимо построить кривую f (s). Это можно сделать методом графического дифференцирования кривой f(s) или, представив кривые относительных проницаемостей аналитически, выполнить дифференцирование аналитическим путем, сделав соответствующее посторенние.

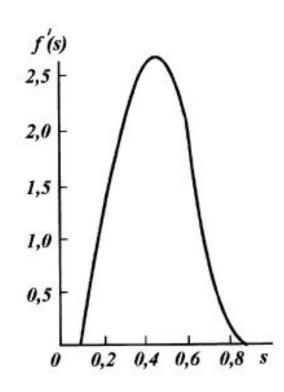



Рис. 4. График зависимости f (s) от s

Заметим, что распределение водонасыщенности в пласте изменяется по мере продвижения в глубь пласта фронта вытеснения нефти водой таким образом, что значения ѕв на фронте вытеснения хв и ѕ на входе в пласт остаются неизменными. Таким образом, кривая распределения водонасыщенности как бы «растягивается», оставаясь подобной себе. Такое распределение некоторого параметра, будь то водонасыщенность или какой-либо другой параметр, называется автомодельным. Соответствующее решение задач так же именуется автомодельным.

Полученные формулы позволяют рассчитать распределение водонасыщенности к моменту подхода воды к линии добывающих скважин, т.е. в безводный период разработки пласта.

Таким образом, мы определили основные технологические показатели разработки элемента пласта.

Рассмотрим непоршневое вытеснение нефти водой в радиальном направлении, например при разработке элемента семиточечной системы с использованием заводнения. Схема элементарного объема пласта для такого случая показана на рисунке 5.

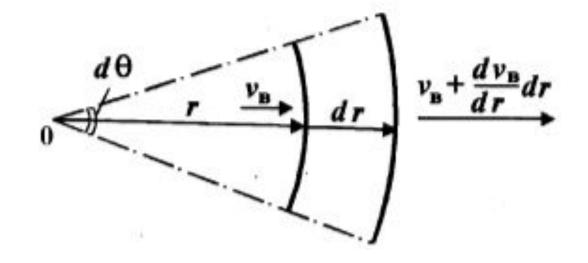



Рис. 5. Схема элементарного объема радиального пласта

Уравнение неразрывности фильтрующейся воды в таком объеме получим с учетом баланса втекающей и вытекающей воды за время dt в виде

$$2\pi r d\theta h v_B dt - 2\pi (r + dr) d\theta h \left( v_B + \frac{\partial v_B}{\partial r} dr \right) dt -$$

 $-2\pi rdrd\theta mds = 0$ .

Раскрывая скобки в выражении, сокращая в нем соответствующие члены и заменяя обозначения обыкновенных производных на частные, имеем

$$\frac{\partial V_{B}}{\partial r} + \frac{V_{B}}{r} + m \frac{\partial S}{\partial t} = 0, \quad \text{ИЛИ} \quad \frac{1}{r} \frac{\partial (V_{B} r)}{\partial r} + m \frac{\partial S}{\partial t} = 0.$$

Вполне аналогичным образом, но с учетом того, что насыщенность пористой среды нефтью sh = 1 - s, установим соответствующее уравнение неразрывности для фильтрующейся в пласте нефти в следующем виде:

$$\frac{1}{r}\frac{\partial(v_{H}r)}{\partial r}-m\frac{\partial s}{\partial t}=0.$$

#### Список литературы

1. Разработка нефтяных месторождений: учебник для вузов / Желтов Ю.П. – Москва: Недра, 1998