
Связь между напряженностью и разностью потенциалов для однородных электрических полей. Эквипотенциальные поверхности.

Цели обучения: 10.4.1.5 - применять формулу, связывающую силовую и энергетическую характеристики электростатического поля, при решении задач

Связь между напряженностью и разностью потенциалов для однородных электрических полей. Эквипотенциальные поверхности.

Критерии успеха:

Знание: Связь между напряженностью и разностью потенциалов для однородных электрических полей:

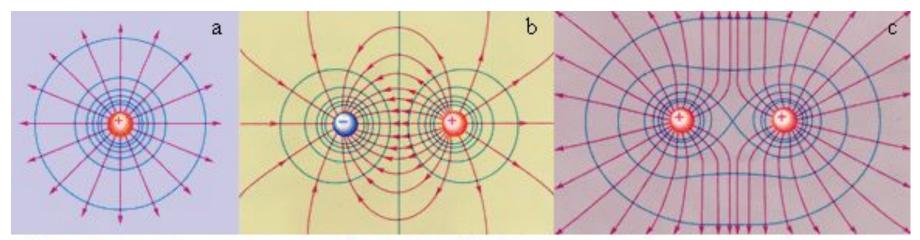
определение понятий: электрический заряд, электрическое поле, напряженность, потенциал, разность потенциалов, напряжение, диэлектрическая проницаемость;

Понимание

сравнение силовых и энергетических характеристик гравитационного и электростатического полей;

Применение

решение задач на применение формулы, связывающей силовую и энергетическую характеристики электростатического поля


Учащиеся должны уметь решать задачи на: движение и равновесие заряженных частиц в электрическом поле; расчет напряженности; расчет напряжения; определение работы электрического поля.

Эквипотенциальные поверхности

- Для наглядного представления электростатического поля наряду с силовыми линиями используют эквипотенциальные поверхности.
- Поверхность, во всех точках которой потенциал электростатического поля имеет одинаковые значения, называется эквипотенциальной поверхностью. По сути, это поверхность одинакового потенциала. Например, поверхность проводника является эквипотенциальной поверхностью.
- Силовые линии электростатического поля всегда перпендикулярны эквипотенциальным поверхностям.

Картины силовых линий и эквипотенциальных поверхностей некоторых простых электростатических полей

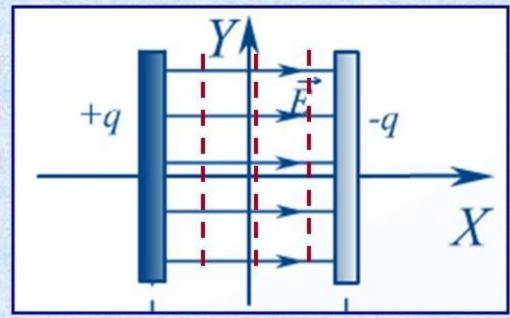
Эквипотенциальные поверхности электростатического поля точечного заряда концентрические сферы. В случае однородного поля эквипотенциальные поверхности представляют собой систему параллельных плоскостей.

Эквипотенциальные поверхности (синие линии) и силовые линии (красные линии) простых электрических полей: а – точечный заряд; b – электрический диполь; с – два равных положительных заряда

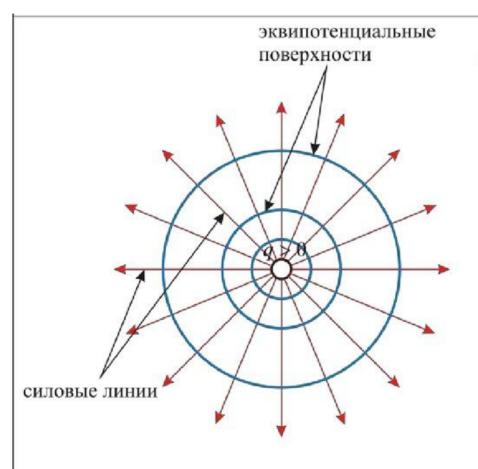
Эквипотенциальные поверхности

Если провести поверхность, перпендикулярную в каждой точке силовым линиям, то при перемещении заряда вдоль этой поверхности электрическое поле не совершает работы, => все точки этой такой поверхности имеют один и тот же потенциал.

Эквипотенциальные - поверхности равного потенциала


- для однородного поля плоскости
- для поля точечного заряда концентрические сферы
- поверхность любого проводника в электростатическом поле

Эквипотенциальные поверхности


Если работа поля при перемещении заряда равна нулю, то и разность потенциалов между начальной и конечной точками траектории тоже равна нулю. Это выполнится при перемещении заряда перпендикулярно линиям напряженности

Поверхность, все точки которой имеют равный потенциал, называется эквипотенциальной

электрического поля.

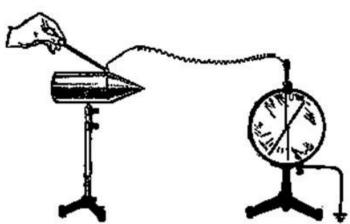
Эквипотенциальные поверхности для точечного заряда

Для точечного заряда

$$\varphi = \frac{q}{4\pi \varepsilon_0 r}$$

поэтому эквипотенциальные поверхности представляют собой концентрические сферы r = const. C другой стороны, линии напряженности \mathbf{E} — радиальные прямые.

Демонстрация эквипотенциальных поверхностей


Оборудование:

- 1. Электрометр демонстрационный.
- 2. Конусообразный кондуктор на изолирующем штативе.
- 3. Эбонитовая палочка.
- 4. Шерсть.
- 5. Шарик пробный на изолирующей ручке.
- 6. Два проводника: один длиной 1,5 2 м гибкий, другой для заземления электрометра.

Вывод:

показания электрометра остаются неизменными, т. е. поверхность заряженного проводника всюду имеет одинаковый

потенциал.

Какая поверхность называется эквипотенциальной?

- А. Поверхность, потенциал которой равен потенциалу другой поверхности.
- В. Поверхность, состоящая из точек, имеющих разный потенциал.
- С. Поверхность, состоящая из точек, имеющих одинаковый потенциал.
- D. Поверхность, потенциал которой меньше потенциала другой поверхности.