Уроки 15-16.

Равносильные формулы.

1

Вопросы.

- 1)Что такое формула алгебраических высказываний?
- 2)Из чего состоит формула алгебраических высказываний?
- 3)Как определить истинна или ложна формула алгебраических высказываний?
- 4)Записать порядок старшинства действий с простейшими высказываниями.
- 5)Записать значения переменных в таблице истинности формулы, если переменных одна.
- 6) Записать значения переменных в таблице истинности

Равносильные формулы.

Две формулы алгебры логики называются равпносильными, если они принимают одинаковые логические значения на любом наборе значений входящих в них элемента рных высказываний.

Равносильност

ь формул F_1 и F_2

обозначается как F F . $_1 \equiv _2$

3

Пример.

Доказать равносильность $A \to B \equiv A \lor B$. Доказательство.

Обозначения
$$\mathbb{A} \times \mathbb{B} \equiv \overline{\mathbb{A}} \times B$$
. Строим таблицу

A	В	m	\overline{A}	n	$m \equiv n$
0	0				
0	1				
1	0				
1	1				

Возведение и извлечение.

Для числа $z = r(\cos \varphi + i \sin \varphi)$ верны формулы:

1)
$$z^n = r^n (\cos(n\varphi) + i\sin(n\varphi));$$

2)
$$\sqrt[n]{z} = \sqrt[n]{r} \left[\cos \left(\frac{\varphi + 2\pi k}{n} \right) + i \sin \left(\frac{\varphi + 2\pi k}{n} \right) \right],$$
 где $0,1 \not \! 2 \equiv \dots -1.$ n

Примеры

Возвести и извлечь.

1)
$$z = 3(\cos 39^{\circ} + i \sin 39^{\circ}), \quad z^{5}, \sqrt[3]{z} - ?$$

2)
$$z = \cos 50^{\circ} + i \sin 50^{\circ}$$
, $z^4, \sqrt[5]{z} - ?$

3)
$$z = 8(\cos 120^{\circ} + i \sin 120^{\circ}), z^{2}, \sqrt[3]{z} - ?$$

Примеры.

<u>Вычислит</u>

<u>Ь.</u>

1)
$$\left[2\left(\cos 32^{\circ} + i\sin 32^{\circ}\right)\right]^{5};$$

2)
$$\left[\cos 72^{\circ} + i \sin 72^{\circ}\right]^{4}$$
;

3)
$$\sqrt[4]{3(\cos 100^{\circ} + i \sin 100^{\circ})}$$
;

4)
$$(1+i)^{20}$$
.

Повторение.

$$\left(-\frac{\sqrt{2}}{2}\right)$$
 + $\frac{4}{3}$ + $\frac{4}{3}$ cos

Вычислить:
$$\left(-\frac{\sqrt{2}}{2}\right) + \frac{4}{3} \cos \left(-\frac{\sqrt{2}}{2}\right) + \arcsin \left(-\frac{\sqrt{2}}{2}\right)$$

Решить систему:

$$\begin{cases} \left(\frac{7}{3}x^3 - 112x\right)' < 0, \\ \left(x^3 + 2x^2 - 4x\right)' \le 0; \end{cases}$$

Вешить неравенство: $\log \left[\log \left(\frac{1}{5} \right) \right] > -\frac{1}{3}$

учебная работа.

1)Составить конспект. 2)Ответить на вопросы. 3)Разобрать слайды

∤аконы равносильности и нуля с единицей.

Законы равносильности:

$$x \cdot x = x$$

$$x \cdot \overline{x} = 0$$

$$x + x = x$$

$$x + \overline{x} = 1$$

Законы нуля и единицы:

$$x \cdot 1 = x$$

$$x \cdot 0 = 0$$

$$x + 1 = 1$$

$$x + 0 = x$$
.

1 Основные функции.

(не

x	\overline{x}
0	1
1	0

(и

1022		
x	у	χ·у
0	0	0
0	1	0
1	0	0
1	1	1

(если, то)

x	y	$x \rightarrow y$
1	1	1
1	0	0
0	1	1
0	0	1

(или

x	y)	х+у
0	0	0
0	1	1
1	0	1
1	1	1

(т. и т.

x	y	$x \leftrightarrow y$
1	1	1
1	0	0
0	1	0
0	0	1

2

Пример 1.

Доказать формулы $x \cdot x = x$ и x + 0 = x.

Докзательст

X	X	X·X
0	0	0
1	1	1

X	0	x+0
0	0	0
1	0	1

Умножение в тригонометрической форме.

Для двух комплексных чисел

$$z_1 = r_1 \left(\cos \varphi_1 + i \sin \varphi_1 \right);$$

$$z_2 = r_2 \left(\cos \varphi_2 + i \sin \varphi_2\right),\,$$

верны действия:

$$\mathbf{z}_1 \cdot \mathbf{z}_2 = r_1 \cdot r_2 \left(\cos \left(\varphi_1 + \varphi_2 \right) + i \sin \left(\varphi_1 + \varphi_2 \right) \right).$$

Пример 2.

Умножить
$$z_1 = \sqrt{3} (\cos 70^\circ + i \sin 70^\circ)$$
 на $z_2 = 2 (\cos 30^\circ + i \sin 30^\circ)$.

Учебная работа.

- 1. Число.
- 2.Фамилия, группа №
 - ---
- 3.Учебная работа.
- 4.Kapma № ...
- **5.Задания** ...

